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Dedication

This volume is dedicated to Stanley Corrsin, Theophilus Halley Smoot Pro-
fessor of Fluid Mechanics at the Johns Hopkins University, in anticipation
of his 65th birthday on April 3, 1985.

Stan obtained his Bachelor's degree in Mechanical Engineering in 1940
from the University of Pennsylvania. Being interested in aerodynamics, he
went to the California Institute of Technology to study in the Guggenheim 4

Laboratory with von Karman. He completed his M.S. in 1942 and his Ph.D.
in 1947, both in Aeronautics, being the first advisee of Liepmann. He was
hired in 1947 on the Faculty of Aeronautics at Hopkins by F. Clauser and
has remained there under a variety of titles ever since. He is Fellow of the
American Academy of Arts and Sciences, the American Physical Society,
and the American Society of Mechanical Engineers. He is a member of the
National Academy of Engineering and Docteur Honoris Causa, Universiti
Claude Bernard (Lyon). He was awarded the 1983 Fluid Dynamics Prize by
the American Physical Society. His research interests have been mainly in
the areas of turbulence, turbulent transport, and biomechanics.

Stan discovered in 1943 the phenomenon of intermittency at the edge of
a turbulent region. which results in distinct regions of vortical and non-
vortical fluid being swept past a fixed probe. With Kistler in 1954 he found
that the interface between such regions is very sharp, spanning a length of
the order of the smallest scales of the flow. The recognition of these distinct
regions led to a whole new concept of turbulence measurement, conditional
sampling, in which account is taken separetely of field measurements at a
point according to whether that point is instantaneously on one side of the
interface or the other. This measurement technique is widely used for the i.
identification of "coherent structures" in turbulence.

Stan made with Kistler in 1954 a first theoretical attempt to study the
entrainment process by posing a mechnism based on molecular diffusion.
His study of the interface in 1955 was one of the first in a small, select
subject called "random geometry".

Stan's insistence on a strong interplay between theory and experiment
has led to his devoting a major effort to the study of simplified turbulent-
flow models free of unnecessary complication. Stan has studied extensively
isotropic turbulence and the transport of scalars in isotropic turbulence.
One of the earliest contributions was in 1951 in which Stan gave for the first
time the form of the spectrum of a passive scalar in isotropic turbulence.



By an elaboration of Onsager's model, he extended this in 1958 to a scalar

undergoing a first-order chemical reaction. This initial work on chemical
reactions in turbulence was further developed in 1961 and 1965.

The dispersion of scalars in uniform shear flows was explored in 1953.
Here the equation for the dissipation of scalar variance was given for the
first time.

The transport of scalars in flow fields involves the relationship between
Eulerian and Lagrangian quantities, a topic that has interested Stan his
entire career. He first suggested in 1963 a form for the Lagrangian time
spectrum and a relation between Lagrangian and Eulerian integral scales.
He gave a simple proof in 1972 of the old conjecture that fluid line elements
grow on the average. In collaboration with his students he carried out ex-
tensive experimental work on this and related random-geometry problems,
including the 1972 work with Karweit on the mixing of scalar stripes and
angular dispersion of line elements.

In the late 1960's Stan became interested in biomechanics. He has in-
vestigated topics that range from the efficiency of human walking and the
characteristics of maternal blood flow in the human placenta, to the flutter
frequency of flexible tubes conveying fluid. Stan gave with Ross in 1974 a
quantitative theory of the pumping of mucous in the airways by the beat-
ing beds of cilia. He formulated with Berger in 1974 a mechanism for the
restoration of the pre-corneal tear film after the lid blinks. He examined
with Higdon in 1978 the aerodynamic efficiency of the formation flying of
bird flocks.

Research and teaching have been the focus of Stan's activities at, Hopkins
for almost 38 years. These activities are blended and indivisible. Hundreds
of students took Stan's course "Fluid Mechanics" and first learned fluid ,. .4

mechanics as a field of research. Dozens of graduates took Stan's course
on turbulence where they learned by example to give open-ended research
problems for examinations. Stan developed an undergraduate course on the
"Mechanics of Animal Motion" in which many pre-meds saw their first, and
perhaps last, quantitative view of the life sciences. The laboratory compo-
nent of "Animal Motion" saw students measuring lizards walking on water "'I.
and Hopkins faculty hopping around the track, aiming to relate the physi-
ological responses to the number of legs used. Stan's leadership shows that
teaching is a multifaceted endeavor including one-on-one research supervi-
sion and collaboration, research-conference development and organization
as well as classroom lecturing on the undergraduate and graduate level. His
availability to workers in all fields is an invaluable, though unmeasurable,
gift to Hopkins.

Finally, Stan has set an example of style and tone. In his research he
has established a point of view in fluid mechanics in which problems are
freed of their frills, attacked with rigor and the result explained with clar-
ity. This approach has been conveyed to his 25 Ph.D. students and dozens

.. _ _ __ _



of associates. Scores of students and associates have participated in his 10
AM coffee hours in which science and religion, among other things, are all
discussed with large doses of humor; he has shown many of us that we need
to view our own work seriously, but light-heartedly. It was here that the first
test was made of contact lenses for the eyes of potatoes! It was here and at
the wine and cheese parties, toasting newly awarded Ph.D.'s, that under-
graduates, graduates, post-doctoral associates and faculty mingled with no
hint of a "class" sytem. This serves as a model for many a group around
the country.

The editors would like to take this opportunity to thank the Office of
Naval Research, in the person of Bob Whitehead, for providing generous
support for the undertaking from which this volume resulted.

Evanston - Ithaca S. H. Davis
December 1984 J. L. Lumley

F

p.

3"p

. . . . ... , . ... . . . . ....... , . . ... . . ... . . . . . . . . . . . . ,'-'



2. The Decay of Total Energy and Scalar Variance .......... 71
3. Return to Isotropy ...... ........................ 75
4. Two-Dimensional Turbulence ....................... 76
5. Convection ...... ............................. 78
6. Concluding Comments ...... ...................... 79
Appendix A ............................... 81
Appendix B ....... ............................... 83
References ....... ................................ 86

Intermittent Turbulent Flow,
By W. Kollmann (With 10 Figures) ....................... 88 .

1. Introduction ...... ............................ 88
2. Conditional Events and Their Description .............. 89
3. Conditional Moments ..... ....................... 92
4. Turbulent Flows with Chemical Reactions ............. 101
5. Applications ...... ............................ 104
6. Conclusions ...... ............................ 108
References ....... ................................ 108
Appendix ....... ................................ 111

The Spectra of Single Reactants in Homogeneous Turbulence-
By E.E. O'Brien ...... .............................. 113

1. Introduction ...... ............................ 113
2. Turbulent Mixing Approximation ................ 115
3. Transport in Composition Space Due to Molecular Diffusion

and Reaction ............................... 117
4. Combined Closures for Turbulent Mixing of a Reactive Scalar 120
References ................................ 121.7.

The Dynamics of Turbulent Spots,
By J.J. Riley and M. Gad-el-Hak (With 17 Figures) ............ 123

1. Introduction ...... ............................ 123
2. The Incipient Spot ...... ........................ 124 *T-K

3. Average Properties of Spots ................... 131
4. Underlying Structure of Turbulent Spots ......... 135 . .. 3
5. Relationship to Other Flows .... ................... 145
6. Conclusions ...... ............................ 149
References ....... ................................ 152

Spectral and Statistical Characteristics of Breaking Waves
By O.M. Phillips ..... .... ......................... 156

1. Introduction ....... ........................... 157
2. The Statistical Equilibrium of Short Waves ............. 158 -
3. Constraints on the Constants of Proportionality .......... 164
4. Some Statistical Characteristics of Breaking Events ...... .165
References ....... ................................ 169

• • , . , • , ,., ._



,How Do Liquid Drops Spread on Solids?1,
By S. Rosenblat and S.H. Davis (With 4 Figures) .............. 171

. Introduction ...... ............................ 171
2. Formulation ...... ............................ 172
3. Lubrication Approximation ........................ 174
4. Evolution Equation ..... ........................ 177
5. Newtonian Liquids ...... ........................ 179
6. Non-Newtonian Liquids ........................... 181
7. Conclusions ...... ............................ 182
References ...... ................................ 183

Effects of Streamline Curvature on Turbulence
By M.M. Gibson (With 12 Figures) ...... ................ 184

. Introduction ....... .......................... 184 .

2. The Analogy Between Streamline Curvature and Buoyancy . . 186 %

- 3. Measurements in Curved Wall Layers............... 189
4. Modeling the Second Moment Equations ............... 194
References ...... ................................ 198

Limitations of Second Order Modeling of Passive Scalar Diffusion-
By J.L. Lumley and I. Van Cruyningen (With 15 Figures) ........ 199 '-

L. Introduction ...... ............................ 199
2. Pope's Problem ...... .......................... 204
3. Equations, Model and Initial Conditions ............... 207- 4. Results and Discussion .• . . 210 :]

: 5. Conclusions .. .. ....................... 216 .-'Cnlios..............................216 ' 21

References ...... ................................ 217

Acoustic Wave Propagation in Fluids *.

By T.S. Margulies and W.H. Schwarz (With 17 Figures) ......... 219
S1. Introduction .................. .. ........ 219
2. Single-Component Newtonian Fluid ..... ............ 221
3. Newtonian Fluid Mixture with Coupled Reactions (Nondiffu-

sive System) ......... ...................... 232
4. Binary Mixture of Newtonian Fluids with a Generalized Fick's

Law of Diffusion ............................... 246 ,

5. Viscoelastic Fluids .............................. 255
6. Viscoelastic Fluids with Coupled Reactions ............. 272
7. Conclusions ...... ............................ 274
8. List of Symbols ...... .......................... 275
References ....... ................................ 278

Publications of Stanley Corrsin ........... ........... 281

" Index of Contributors ............... ............ 289



On the Approach to Isotropy of Homogeneous Turbulence: Effect
of the Partition of Kinetic Energy Among the Velocity Components

L. Le Penven, J.N. Gence, and G. Coante-Bellot

Laboratoire de f4*canique des Fluides, associb au CNRS, Ecole Centrale de Lyon et
Universitb de Lyon 1, 36 Avenue Guy de Collongue, F-69131 Ecully Cedex, France

1. Introduction

It has long been admitted by folk wisdom rather than by analytical

proof that in the absence of mean velocity gradients, homogeneous ani-

sotropic turbulence evolves towards isotropy. The first experimental

findings were due to UBEROI (1957) for the velocity and vorticity

components, and to MILLS and CORRSIN (1959) for the velocity components,

the temperature fluctuations and their associated skewness factors

(signals and derivatives). Experimental confirmation was later given
by COMTE-BELLOT and CORRSIN (1966), TUCKER and REYNOLDS (1968), WARHAFT

(1980), and GENCE and MATHIEU (1980) for velocity components. Numerical
studies made in wave-number space supported also the same trend

(SCHUMANN and PATTERSON, 1978).
The question of how fast the return to general isotropy (i.e. on

all scales) takes place, is however of fairly long standing. Recently

GENCE and MATHIEU (1980) (see also GENCE, 1983) made an interesting

suggestion by taking advantage of the invariants II and III of the

deviatoric tensor b j introduced by ROTTA (1951) and extensively used
by LUMLEY and NEWMANN (1977) in turbulence modeling:

bij = 2 + 32 + (u;)()

II = bb (2)
ij ji

III bkbkb . (3)bikbkjbji

A time scale rR for the return to isotropy was defined from invariant
II, by:

1 1 dII (4)-- - I" (4)

F. i

and compared to the usual time scale T for the turbulence decay:

1 1 dc 2 (5

T = - dt (5)
Du q

J..< .. ' -''
" t ' "'-'"'-
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The return to isotropy was then observed to be relatively rapid,

at least at the beginning of the process, (i.e., tR between 0.2 TD and

0.4 1D) in most of the cases where the invariant III was negative,

whereas the return to isotropy was found to be fairly slow (i.e.

t -*0.6 tD) in GENCE and MATHIEU (1980), a case for which the invariant
R D

III was positive. In Table 1 (upper part) are listed all the results

available presently. The Reynolds number ReL has been also indicated,

although it was rather large in all the experiments (ReL is defined by

(q 2 /9-v which gives Re - u'L/v for isotropic turbulence). In Fig. 1

the curves of log(q2/U2) are plotted versus log II (a suggestion made

by J.L. LUMLEY, private communication). The slopes of the linear curves
which are obtained are then simply related to T and T by:

simlyreatd o R D y

K.2 2 2d(log q2) = (1/q) . (dq /dt) = R (6)
d(log II) (/II) *(dII/dt) T

We recall that invariant III specifies the shape of the ellipsoid

associated with the Reynolds stress tensor. It is positive when only

one principal component is relatively large and it is negative when

two principal components are large. This is illustrated in Fig. 2 for

two cases of axisymmetric turbulence

The possible role of the invariant III on the return to isotropy" '

was an incentive for two recent investigations. At Cornell University,

1007O05

2 -2Fig. 1 - Evolution of log(q /U2 ) against log II in different experi-
ments of return towards isotropy * Uberoi (1957); 0 Mills and Corrsin
(1959); A TUcker and Reynolds (1968); 0 Gence and Mathieu (1980);
A Warhaft (1980); in all these experiments a =2; * Comte-Bellot and
Corrsin (1966) with a =3.
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-Table 1- Initial values of the Mean values

parameters of T D/R
......-- derived from

Experiment ReL II III TD/TR Fig. 1

UBEROI (1957)
Axisymmetric 160 0.047 -4 10 -  2.4 2.8
contraction

MILLS & CORRSIN(1959
Axisymnetric 60 0.056 -5.3 10 4.3 2.8
contraction -

COMTE-BELLOT &
. CORRSIN (1966) 420 0.0015 +2.4 16 - 5 0.48 0.5
" (Grid without "

contraction)

TUCKER & REYNOLDS
(1968) 460 0.08 -5.2 l6 3 4.5 2
(plane distorsion)

WARHAFT (1980) 16,3
Aisymmetric 150 0.116 -16.1 10 1.3 2.6
contraction

GENCE and MATHIEU
(1980) 450 0.08 +4 10- 3  1.6 2

(plane distortion)

CHOI (1983)
(plane distortion) 180 0.061 + 0.75 10 5.1 1.22

CHOI (1983) 3
(Axisymmetric 260 0.062 + 5.8 10 1.3 1
expansion) - ---

Present experiment 350 0.054 +3.1 10 1 1

Present experiment 450 0.062 -5.10 - 3  2.4 2.6

... -" "-.

U.3

-,,

1%W!
11>0 11<0

Fig. 2 - Physical meaning of the sign of invariant III. L

3
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CHOI (1983) examined the evolution of two anisotropic turbulence fields

with positive invariant III. At the Ecole Centrale de Lyon, LE PENVEN

and GENCE (1983) generated two anisotropic turbulence fields with near-

ly opposite values of III and equal values of II and ReL.

The present paper will describe the new results we have obtained.

A physical interpretation for the role of the invariant III will also

be attempted. Finally, since the return to isotropy is of great inte-

rest for turbulence modeling, mainly for the pressure-strain terms

which are responsible for the intercomponent energy interchange,

several actual models will be compared with our experimental findings.

2. Experimental Arrangements

10) Distorting ducts

Two kinds of irrotational three-dimensional strains were used to

create, from the same isotropic grid-generated turbulence, the two
required anisotropic turbulence fields with opposite invariants III
and equal invariants II. Indeed, a three-dimensional deformation offers

two adjustable parameters, U1,1 =aU1 /xl
' U2 ,2 =aU 2/ax2 and not just

one as for a plane or an axisymmetric deformation where U ,1 =  2 ,2 "

As usual, the fluid is assumed incompressible so that

3,3 -(UI,1 + U2,2) (7)

Additional useful requirements were also specified
- the length of the distorting ducts should be of the order of 1.5 m
to offer a gradual straining able to smooth out the discontinuities at
the inlet and outlet of the distorting ducts. This length also suited
the wind-tunnel facilities available in the Laboratory.
- the shortest side of the rectangular outlet section of the ducts
should be at least of the order rf 7 integral length scales to insure
an acceptable lateral homogeneity of the turbulence field.

the mean velocity at the inlet of the two distorting ducts should be
the same to insure identical turbulence Reynolds numbers for the ini-

tially isotropic grid turbulence.

- along the distorting duct, positive values of U1 1 are advantageous

for reducing flow separation.

The stream surfaces limiting the distorting ducts are given by :

U2,2/01,1
x= 10 ( + U I ' I x) (8)

-(1+U2,2/U1,1)

x h U_1__1 x(9)

3 0 + U 0 1
.4:2



210 and 2h0 are the lateral and vertical dimensions of the inlet rec-

tangular section (Fig. 3) where U0 is the streamwise mean velocity.

Moreover, if T is the residence time of the turbulence in the duct of

length L, it can be written

4U1U1 T = Ln(1 + U L) (10)

so that for a given shape of the distorting duct, the ratio UI, /U0
and the dimensionless gradients U1 ,T and U2 2 T are determined. The

values of U 1  and U2 ,2 are imposed when U0 is given.

40 10

II
Fig. 3 - The two different distorting ducts used in the experiments.

A small time linear theory with isotropic initial conditions indi-

cates that one can write

I1(T) a 2Ui,k iT2 + O(T 3)

II1(T) = U + OCT (12)

Then, as a first step U T and U2,2T were chosen to give the same

II and opposite III in this linear approximation, and to be realized

in ducts satisfying the above mentioned constraints.

As a second step, several runs were made to include non-linear

effects. The spectral method developed by :AMBON, JEANDEL and MATHIEU

(1981) was used with the three-dimensional energy spectrum (at 42

meshes) of COMTE-BELLOT and CORRSIN (1971) as initial condition. The

values of UIIT and U2 2 T which were retained are listed in Table 2
with the predicted levels of the invariants II and III and the time T

used in the computations.

For the ducts given in Fig. 3, whose lengths L are equal to 1.5 m,

the values of time T correspond to a streamwise inlet velocity U0 of

6.7 r/s. In the experiments U0 was equal to 6.06 m/s for III >0 and

to 7.2 m/s for III <O. The predicted values of II are slightly smaller

than those observed in the present experiments and indicated 
in Table

5



- Table 2 -

III >0 111< 0

U1 1 T 0.8 1.09

U2 . 2 T 0.29 -0.29

I1 0.045 0.045

III 0.0021 -0.0024

T 0.146 s 0.123 s

1. This is probably due to the initial spectrum used in the calcula-
tions which is taken at the same distance downstream of the grid as in
the experiments, but at a higher convection velocity UG so that the
mesh Reynolds number is too large by a factor of about 2. The non-li-
near effects reducing the anisotropy level are then stronger in the
computations than in the experiments.

20) The wind-tunnel

The distorting ducts are included in a flow facility which is of
the open return type and where the basic elements are (Fig. 4)
- a collector which is 4 m x 4 m in cross section followed by a
settling chamber which is 2 m long and equipped with dust filters and
screens.
- two contractions with a overall ratio of 16 : 1.
- a constant area duct (0.83 m x 1.19 m) in which the grid which gene-

rates the turbulence is located at 1 m from the inlet.
- the grid is biplane with square meshes (M = 5.08 cm) and square rods.
(solidity o =O.33).
- an additional 1.27 : 1 contraction placed at 18 meshes downstream of
the grid, to improve the turbulence isotropy as suggested by COMTE-
BELLOT and CORRSIN (1966).

EE

13m 1 im 5 .m,~ 1.5m M.13mI
GRID CONTRACTION DISTORTING TEST SECTION

1.27:1 DUCT
Fig. 4 - Wind-tunnel arrangement.
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- the distorting duct, either that for invariant III > 0 or that for

invariant III < 0.

a 5.13 m constant area duct in which the return to isotropy is inves-
tigated ; its cross section is 0.99 m x 0.35 m when III is > 0 and

0.55 m x 0.48 m when III is < 0.

3. Measuring Equipment and Procedure

All turbulence data were taken with standard X-meter probes DISA

55 P 51, with hot wires 5 wm in diameter. They were connected to DISA

55 D 01 constant-temperature anemometers and operated at an overheat

ratio of about 0.8. The output signals were then passed through DISA K:

55 D 25 band filters (1 Hz - 20 kHz). Finally, the root mean square

values of the signals were obtained by a DISA D 35 r.m.s. voltmeter.

The wire sensitivities were determined empirically from the first :
derivatives of the heat transfer law with respect to the longitudinal

velocity component and the wire angle with the xI axis. Calibrations

were made in the empty wind tunnel (no grid). The weighted sum and

difference, e1 +Ke2 and eI -K'e2, were formed from the two hot wire

signals of the X-meter to produce outputs directly proportional to the

longitudinal and lateral velocity fluctuations. The probes were first

used to get uI and u2, then turned by 900 to obtain u and u3 . The in-

evitable scatter from one run to the other, from day to day because

of drift in the ambiant temperature, or due to change of hot wire

probes, was reduced by taking arithmetic means over 6 measurements for .'1
all the data.

The mean velocity in the test section increases slightly along the

axis due to boundary-layer growth (Fig. 5). The resulting effect of

this strain rate (= 0.2 s on the dynamics of u.u. is fortunatelyS3

15

14

13 3 X, (m)5

U, (m/s)

22 I I 0o 0 0 0 0 0

m<0
10 23 4 X, (M)5

Fig. - Longitudinal mean streamwise velocity along the axis of the
test section. '1
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very small (see section 5). The local mean velocity is however taken

into account when computing the travel time t downstream of the test

section.

Background (no grid) turbulence was neasured for each component,

at various locations in the test section (Table 3). An appreciable part

of it seemed due to a slight unsteadiness of the fan (u is larger

than u' and u; and its spectrum is large for low frequencies). All

the turbulence results were corrected for such noise, by its subtrac-

tion from the mean squared values. The correction was down to 0.2 % in

the best situation, for u' at the beginning of the test section for

III positive, and reached a maximum of 10% for uI at the end of the

test section for III positive or negative.

Table 3 - Variation ranges for background turbulence.

III > 0 III < 0

(u /UC) 2 4.1 I0- 6 1.1 i0-6 to 2.4 10-6

(u?/UC)2 2.7 10-7 to 6.6 10- 7  4.3 10- 7 to 6.5 10 - 7

(u;/Uc) 2.8 10- to 1.15 10-6 4.3 10-7 to 6.5 10-7

U 13.5 m/s 21.5 m/s

Lateral homogeneity of the turbulence field was considered as

acceptable even close to the end of the test section and along its

shortest (vertical) side. Fig. 6 shows that the central plateau covers

about half of the height, which approximately corresponds to 6 times

V the average integral length scale of turbulence estimated as M(h/hO)
(2h0 height of the distorting duct at its inlet, and 2h at its outlet).

4. Experimental Results

In all the results presented in this section for the return to h

isotropy, the elapsed time t is computed from

t= 1A , (13)

AX1 U 1 (x 1 )

where the space origin is slightly shifted downstream of the beginning

of the constant area duct. The reason, which is apparent from Fig. 5

and also from Fig. 7, is that the distortion continues to act just

after the duct area has changed (the mean velocity on the axis conti-

nues to increase rapidly and the turbulent quantities do not change

noticeably. The shift estimated from Fig. 7 is Ax1 =0.03 m for the

V.
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Fig. 9 - Evolution of log(q 2/U2

L04 q2/Uc + 4 Choi(ex4arsionM> against log II in the two present
Co If ie, experiments

Choi ptan distortion)03 / L
I 0/ I

021 / ,
02,,

0. M>0/ """ iiio 0 V

/ /•
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10 T/TD=0O.3 2
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respective values at t = 0) are almost identical so that TR T ..

whereas when III is negative, II evolves more rapidly than q , so

that TR < T D (in fact TR - 'O.38 TD

Another presentation of this result is given in Fig. 9 where
2 2log(q /Uc) is plotted against log II. We recall that the slope of the

approximately linear curves gives TR/TD (see section 1). In other

words, the larger the slope, the slower is the return to isotropy.

The recent results of CHOI (1983) are also included in Fig. 9. His

first case (II10 =+5.8 0 -, axisymmetric expansion) agrees very

well with our experiment at II10 = 3.1 10- 3 ) . The results of his .

second case (III0 = + 0.75 10- 3 , plane distorsion) are located between

our two sets of data for positive and negative invariant III, which

shows that, as expected, a monotonic effect of invariant III exists

on the return to isotropy mechanism.

Fg - Time evolution of the partition of kinetic energy among the

velocity components. *(ul) 2/U2; 2 /U2. OW)2/U2  c= 13.5 ./s1 c 2 c' u (Uc
for III >0 and Uc =21.5 m/s for III <0)

Fig. 8 - Time evolution of q2/q and 11/110 (qo =44.5 x 10' m2s 2 ;

II O -0.055 for III > 0; q2 =7.8 x 10-2 m2 s 2 ; II =0.0621 for III < 0)

11 .'.



5. Consequences for Turbulence Modeling in the Physical Space-

The evolution of homogeneous anisotropic turbulence in the

absence of a mean velocity gradient is a basic situation for modeling

workers because it is the simplest case in which the pressure strain

correlation terms are different from zero and the dissipation terms

possibly not isotropic.

The major attempt to close in a rational way the equations gover-

ning the Reynolds stress tensor, and the dissipation, was proposed by

LUMLEY and NEWMAN in 1977. First they wrote these equations as

follows

du.u.
t p + U 2v u u (14)

(U.dt p ,)-2v -i,k j,k

- 2-

' = P ( u i  j  +  j i ) - 2v Ui,kUj, k  + 3 z ij ( 5

- - ; ij -2 6 and (16)

d' -- 2vu ui  - 2v 2 u U(17)

dt 2vui,kUk,jUj,i i,kjUi,kj (17)

-2
C2= -,(18) '

q

with = VUi kUi k as usual. Then, they regarded these equations as

equations for Oij and * and assumed that oij and 0 can be approached

by functions of the present state defined by uiu j , c and v or bij q2 ,

c and v (and not by functionals of these arguments which would involve

the history of bij, q and e). Finally, the use of invariant theory

permits them to obtain:

4i = 8(IIIII'ReL)bij + y (II'III'ReL)(bikbkj- -J 6) (19)

and

iji = q (II,III,ReL) . (20)

7 At that stage, modeling concerns the unknown functions 8, y and

ij. Use is made of realizability conditions (SCHUMANN, 1977) and ..

of existing experimental data. Cumbersome expressions are sometimes

elaborated and LUMLEY (1978) suggested simplifications with no apparentI loss of efficiency. (us it a

The simplification y = 0 and * independent of invariant III,

proves to be satisfactory for predicting experimental situations in

which the invariant III is negative (LUMLEY, 1978). We made, there-

fore, numerical computations based on this simplification for both '

12
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Fig . 10 - Comparison of the numerical predictions with the present
experimental data [(---) model of Lumley; (-) model of Choi]; sym-
bols for experimental data are the same as in Fig. 7

our situations. From figure 10 it is clear that the case of negative
invariant III is again well predicted, but that a too fast return to
isotropy is computed when invariant III is positive. In order to gain
physical insight into the modeling, it is worth examining more closely

what is implied by the assumption y = 0. CHOI (1983) has shown ex-

plicitly that y = 0 implies, from equation (16), whatever the form
of B, that:

1 dII 1 dIII
2 11 d t = I -I d t '( 

1 :

211 _(21)

or, after integration:

TI 1/2 = .111111 /3  (22)

where a is a numerical factor (see appendix). By the way, we recall
that a was simply chosen as a constant by ROTTA (1951). Now, it
happens that expression (22) is necessarily satisfied by any axisym-
metric turbulence for which a is: (3/2)1/2(4/3)1/3, or more simply
1 /6

6, a value which is also apparent from the plot of limiting values

of the second and third invariants for turbulence (LUMLEY and NEWMAN,
1977).

.13*' .



It is, therefore, most interesting to considerer experimental

situations for which the turbulence is not axisymmetric in order to

draw conclusions about the validity of the simplified model y = 0.

This is done in Fig. 11 where II / 2 is plotted versus III I/3 for the

few experiments available in the literature and also for the present
investigation. The main observation is that the plotted curves are not,
a priori, straight lines converging to the origin of the axes. More

precisely it seems, when invariant III is positive, that turbulence

evolves towards axisymmetry before returning to isotropy. When inva-

riant III is negative, the same phenomenon does not seem to occur, but 0A.

the data are scarce or exhibit a large scatter. %I%
o Presents results T1<O Gence and Mathieu

and M1>0
* C hoi*Tucker and ReynoLds 03

*.03

0R o t t a e -, .

0) 0
.02 • -° :

10
N i xisymmetric

---------------ert°g2°I \ o:::
-o0 . , 0.1,2
ig. 11 - Evolution of TI1/2 versus II for different experiments

of return towards isotropy in non-axisymmetric cases.

(---) Prediction of Bertoglio (Private communication)
-- ) Prediction of Cambon (-t-u-i

In his newly suggested model, CHOI (1983) takes into account this

evolution towards axisymmetry by setting y different from zero. The

non-linear terms in bij are therefore kept in ij Adjustment of

the dependance of y on the invariants II and III was then made, as
usual, from realizability conditions and with respect to experimental

results. Use of CHOI's model for the present investigation predicts

very well our data for positive invariant III (Fig. 10). This is a

valuable improvement of LUMLEY's work (1978). However, when the inva- -

riant III is negative the superiority of CHOI's method over LUMLEY's

is not so clear. CHOI's method seems to give by its nature a slightly

14 "' -" •. . ,;; .. , .".'.,, ..:'.', "-" ' . L v y ; : . ,,,- .- .



too fast return to axisymmetry which is not apparent in the experimen-

tal data.

Now, we can return to the effect on the Reynolds stress of the

slight mean velocity gradient which exists in the constant area duct

used to study the return to isotropy. We have measured UI =0.17 s-1,

for III positive and U =0.20 s for III negative. Estimates of
the effect on u u" was made as follows. For the linear part of the

pressure-strain correlation terms, use was made of the model suggested

by LUMLEY (1979). For the non-linear part of the pressure-strain corre-

lation terms, use was made of LUMLEY's (1978) model in the case where

the invariant III is negative and of CHOI's (1983) model in the case

where the invariant III is positive. Comparisons of the computed values

of u) 2 (i= 1,2,3), q2 and II were made for the end of every duct

between the two cases U1 .1 =0 and U 1 equal to the above values.

The respective variations obtained are 0.3 %, 3.3 %, 3 %, 2.4 %, 13 %

when invariant TII is negative and 0.7 %, 4.5 %, 2.6 %, 2.4 %, 4.8 %

when invariant III is positive.

6. Anisotropy of the Spectral Tensor

An insight into the physics involved by the sign of invariant III

can be gained from an inspection of what happens in the wave-number

space for the anisotropy of the spectral tensor ij (Kt). Of course,

measurements of ij (K,t) would be interesting but they are almost K
beyond reach in non-isotropic turbulent fields for which all the com- V.

ponents of R ij (r,t), the two points space velocity correlation tensor,

should be measured.

Help can fortunately come from modeling in spectral space, and

two methods are available for non-isotropic cases. The first one is ,.-

the approach of CAMBON, JEANDEL and MATHIEU (1981) where the equation

governing 'i.(K,t) is averaged over the sphere of radius K and the

closure made by an E.D.Q.N.M. technique. The second approach is due

to BERTOGLIO (1982) who retains i.(K,t) and models the three-di-
1)

mensional transfer terms directly by an E.D.Q.N.M. assumption, and

who made recent improvements to his numerical procedure (3-D computa-

tions are now possible for every value of the wave number, BERTOGLIO,

private communication). The anisotropic spectrum . (K,O) needed for

the initial condition was deduced by submitting the isotropic grid-

generated turbulence spectrum (COMTE-BELLOT and CORRSIN (1971)), to

the irrotational straining of the distorting ducts. These initial

data do not correspond exactly to those in the present experiments

(as already pointed out in section 2), but closely related trends can

be obtained since the turbulence Reynolds number differs only by a
-- a factor of about two.

. .. , . . - . " . ... . . . . . .,. , ... ....15 ,. . .
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Case III > 0. Case III < 0.

As a preliminary check let us look at the results obtained after
2an integration of tip (K,t) over the wave vector K, which gives q t)

and II(t). Their time evolutions are reported in Figs. 12 and 13 and

exhibit the same trend as the experimental findings, i.e., the slowest

return to isotropy is when the invariant III is positive. From Fig. 12

it can be seen that even TR > TD (the curve of II is above the curve

of q 2 ).

% The respective evolution of the invariants II and III can also be

%*- obtained. They are indicated in Fig. 11 under the form I1/2 versus" iii/3
Y. II . It is worth noting that the two ways of modeling non isotropic

turbulence in spectral space predict the experimental findings very

well, i.e. that turbulence evolves towards axisymmetry before its

return to isotropy when invariant III is positive, and does not do so

when this invariant is negative.

Now that these global checks have been done, we can focus our

attention on the anisotropy of the spectral tensor i.(K,t) itself.
This anisotropy can be considered along two complementary ways by

% ~
taking advantage of the local coordinate system built on the wave

number K and two axes in the plane perpendicular to K (the usual ref- "M
erence system of spherical coordinates). For an incompressible fluid

the spectral tensor expressed in these new axes reduces to four non

zero components pjj related to that plane (i and j = 1 or 2) with
Hermitian symmetry. Imaginary parts of !j are zero (in usual tur-

16
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Fig. 14- In the plane normal to the wave vector K (also tangent to
the sphere of radius K =IIKII: a, b are the principals axes of Jj;-
w', y" are segments proportional to the principal values of PJ(for
isotropic turbulence a = i). (CRAYA, 1958; Bertoglio, 1982)

bulence there is no helicity), so that the principal axes and the

principal values of 4i can be easily visualized in the plane normal

to K, for each vector K (Fig. 14).

For a given wave number modulus K, it is then of interest (i) to

determine if all the wave number directions are uniformly fed, as they

would be for isotropic turbulence, and (ii) to compare the two principal

values of ij' which would be identical for isotropic turbulence.

Figure 15 visualizes 4]j(X,O) at the begii)ning of the return

to isotropy when invariant III is positive, for a relatively small

value of the wave number modulus (close to that at which the maximum

of the kinetic energy spectrum is located, K =0.3 cm - 1 and for a

values 10 times larger (K = 3.47 cm-). For K = 0.3 cm- 1 depleted

zones are clearly visible in the "artic" and "antartic" regions along

K on the left and right (large velocity components in direction 3

preclude wave-numbers in the same direction). The principal values

4,L are also very different, one being almost zero. On the other

hand, the spectral contributions at K = 3.67 cm-1 are much more uni-

formly distributed, as expected for small structures from the local

isotropy concept.

Finally, let us try to relate the anisotropy of the spectral

tensor to the invariants II and III used in the physical space.

General expression are probably beyond reach, but fortunately simple

relations can be obtained for axisymmetric turbulence

I1(t) = 1 ,01  [ (K,t) - 3 (Kt)]dK (23)

3
2 1 'I

III(t) { [ (K't) 3 3(Kt)]dK}

1%
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Fig. 15 - Visualization of the anisotropy of the spectral tensor for
two values of K (time t =0)

uu j (t) 7 'P (Kt)dK (24)

where xI is the axis of symmetry. Then, it is clear that the quantity

A(K,t) = 11(Kt) - 033(K,t)l/q2(M (25)

is a spectral measure of the anisotropy and the sign of rZ A(K,t)dK
is that of invariant III.

The numerical results obtained by CAMBON's method for two turbu-

lence fields specifically generated by axisymmetric distorsions such

that invariants II are equal and invariants III are opposite, are indi-

cated in Fig. 16 for t =0 (end of the distortion and beginning of

the return to isotropy). *

I'P1- /q' = IAcK) I>0
(cm flMI<0

0.3 0.05

02 o0

0..

* %

01 ; Fig. 16 - Anisotropy distribu-

;' -.... , 21 tion among wave number modulus, , , . . . rn i(t 0) I i
. 5 1.0 15 20 25" 0
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The areas under the two curves of Fig. 16 are almost the same.
The main result is therefore that the anisotropy is concentrated, in

structures which are larger for positive rather than for negative

invariant III. It is then tempting to conclude that these large and
energetic structures will need a relatively long time for their return

to isotropy. N

7. Conclusions

In the present investigation we have tried to illustrate the N

* effect of unequal kinetic energy partition among the three fluctuating %velocity components, on the rate of return to isotropy of homogeneous I
turbulence. This unequal partition of energy was particularly reflec- .

"-. ted in the third invariant, III, of the deviatoric tensor of the

Reynolds stress. -n I
In the situation where one component only is very energetic

(positive values of III), the return to isotropy was found to be slow
and possibly preceeded by an evolution towards axisymmetry for the
two small components. In the situation where two components are ini-

" tially large (negative values of III), a case for which the energy was
already expected to be more uniformly distributed in the physical

space, the return to isotropy was indeed observed to be faster,
compared to the decay time, and with no visible tendency to axisymme-
try. For brievety, here, the limit between the fast and the slow rates

was located at III = 0, but, of course, a slightly different value is

certainly possible.

The third invariant is directly involved in the modeling of tur-
bulence in the physical space, along with several numerical factors

" which have to fit experimental data. We therefore believe that atten-

tion has to be paid to the class of data to be taken into account,
according to the sign and value of their invariant III.

Turbulence modeling in wave number space seemed to work whatever

the sign of invariant III. The reason could be that one numerical fac-
tor only has to be adjusted and that this can be done by comparison
with theoretical models (test field) rather than with experimental

data. In the present investigation spectral modeling permitted us to
visualize the anisotropy of the spectral tensor which is beyond reach

in experiments.

The present work was limited to non-isotropic turbulence gene-
rated by irrotational strains. Other types of anisotropy would cer-
tainly be of interest as intermediate steps towards usual turbulent
shear flows in which invariant III can be expected to be positive,
since in most cases the longitudinal velocity component is the lar- C
gest, by its direct gain of energy from the mean flow.
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Appendix: Relation between II/2 and III I/3 when y =0

From expression (1) and (16), and the definition of E i.e.:

ij 2 3
qd - = _ _ 2 [ - '

d- u i uCD ij ij...

d 2
dt 1-2t

one obtains:

S -p

2~~~ ii 3 I) 2
q q q

- Dij - 2b j)

Now, if y =0 in expression (19), t reduces to:

#ij = 8b..
1J 1)

•- sO that:

dt ij 2 (8 2)b j
q "

The time derivatives of II and III are then simply:

=I2b -bj = -2 (8-2)11 and ,-
dt ij dt ij 2

q
d I I d - --

= 3b ikbkj = -3 2 (8 - 2)111 -:-"2

which gives,

1 dII 1 dIII
=1T dt r -1 " =t

and hence:

1i/2 1/3 "'
= cIIIIJ'''".

where a is a numerical factor. This result holds whatever the depen-
dence of a on II, III and ReL. 1
20
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Random Incompressible Motion on Two and Three-Dimensional
Lattices and Its Application to the Walk on a Random Field

Michael Karweit
Department of Chemical Engineering, The Johns Hopkins University
Baltimore, MD 21218, USA

1. Introduction J
One of the more important features of turbulent flow is its

ability to disperse contaminants. But, because the most convenient

way of describing the turbulent field is in terms of Eulerian or

"laboratory" coordinates, and particle dispersion is naturally

expressed in Lagrangian or "material" coordinates, dispersion is

not well predicted quantitatively. The principal difficulty is that

the two-point Eulerian statistics which characterize the velocity

field do not admit to unique two-point Lagrangian displacement

statistics which describe particle dispersion.

A way to gain insight into this problem is to work with a process

which is conceptually simpler, and which exhibits some of the same

difficulties. In this paper we take this approach and develop an

analog to turbulent dispersion based on an extension to the principle

of the random walk.

The classical random walk was first used by Einstein (1905)
as a means by which to understand the relatively simple problem of

brownian motion. In the random walk technique, hypothetical particles

are given randomly selected, discrete movements and the statistics

of the motions of an ensemble of particles are accumulated. The

approach has since been used by others for more complex problems,

e. g. Bugliarello and Jackson (1964) for laminar convective diffusion.

Karweit and Corrsin(1972) expanded the idea of a random walk from
"simple" to "compound" to simulate material line growth in turbulence.

However, such classical random walks are only peripherally related

to turbulent dispersion because particle movement is assigned to 'i

the particle and no consideration is given to a field in which the
particle might be moving. In the classical scheme only statistics

following the particle, i.e., Lagrangian statistics, are calculable.

To more completely model turbulent dispersion, Lumley and Corrsin

(1959) introduced the concept of a "walk on a random field". Here,
the motion of fluid parcels (or particles) is prescribed by random
velocities attached to a field of lattice points in space rather



than to the particles themselves; and the movement of particles

proceeds from point to point as dictated by the velocity at the point

in the field where each is located. Both the Eulerian statistics

of the underlying velocity field and the Lagrangian statistics of

particle motion are obtainable. Patterson and Corrsin (1966) used

this idea to model the dispersion of particles moving on time-evolving,

one-dimensional, latticed, binary-velocity fields. Their experiments

considered dispersion on fields which had a variety of spatial and

temporal correlations. A fundamental limitation in their work,

however, is that one-dimensional, random velocity fields are b

necessarily compressible; and consequently their results have marginal

applicability to "real" turbulent dispersion.

The extension of those experiments to the more applicable case

of two and three space dimensions, however, proved to be difficult.

* The problem lay in producing acceptable fields. What is needed for

two dimensions are fields which are random, bi-directional-binary,

and incompressible; and they must have some "persistence" in both

space and time, i.e., correlation. (Our definition of

- "bi-directional-binary" is +1 or -1 in the direction of either of

the two coordinates). Further, their properties should be

statistically homogeneous and "isotropic". Patterson (1958) derived

the equations of constraint for incompressibility, but did not develop

an algorithm for producing satisfactory fields. It has been only *%

recently that Karweit (1984) was able to demonstrate a possible method

for generating acceptable fields. In that work he also used those

fields to carry out several dispersion experiments. ..-

A geometric portrayal of these latticed fields is given in Figure

1. Here we show an example of a two-dimensional, bi-directional-binary

random velocity field--in this case a Markovian one, i.e., one having

no spatial correlation.

It is this class of random fields and walks on these random

fields that we explore in this paper. Partially replicating the

experiments of Karweit (1984), we generate correlated two-dimensional,

bi-directional-binary fields, (from here on referred to simply as P
discrete fields) and investigate some of their unique properties.

Although we demonstrate the extension of our procedures to

three-dimensional, tri-directional-binary ones, our principal treatment

will be for the two-dimensional case. We show the results of several

numerical dispersion experiments. These experiments consist of

following the trajectories of fluid parcels whose motions are

prescribed by the discrete fields. We calculate Eulerian statistics

of the fields; and by accumulating the details of the particle

23
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J Lu . il Figure 1. A typical two-dimen-
-1 sional Markovian discrete veloc-13 ity field.

13 0

_J 13 1-

trajectories over an ensemble of realizations, we produce dispersion

statistics for the particles. The relation between the field
statistics and the dispersion statistics are presented. Also, we
compare these statistics from experiments made on discrete fields
to those obtained from analogous experiments performed on continuous,
two-dimensional, incompressible fields.

2. Description and Generation of Discrete Fields

A discrete field consists of a two-dimensional, square lattice
of bi-directional-binary velocity vectors. The vectors can take
on only one of four values: +1 or -1 in the x-direction, or +1 or
-1 in the y-direction. Thus a velocity vector always points to one
of the four adjacent lattice points(nodes). A field is incompressible
if at every node exactly one vector is leaving and one vector (from
another node) is entering. We disallow an exchange of exit(entry)
vectors between two nodes. So, in a unit of time a parcel of fluid
leaves every point in the lattice, and a different parcel of fluid
enters every point from an adjacent node.

As indicated above, we are interested in producing not just
arbitrary discrete fields but discrete fields which are statistically *

homogeneous and "isotropic", and have particular spatio-temporal
characteristics, e.g., specified spatial and temporal correlations.
Earlier attempts to produce such fields by Patterson(1958) and later
by Maxey(1979) focused on generating incompressible discrete fields--

* constrained fields--in terms of preassigned unconstrained fields.
Their algorithms were designed to translate the easily-generated

unconstrained fields into correct incompressible fields. Their method

4,24
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Figure 2. Notation for describing the velocity
at lattice node (i,j). Values for the two ordered
pairs of binary variables [A,B] and [G,H] define
the directions for the entry and exit vectors,
respectively. Lattice nodes from (to) which entry
(exit) vectors point are also given.

was successful in that correct incompressible fields could be produced,

but the fields thus produced were spatially biased, and hence not

acceptable. In this paper we proceed somewhat differently and manage

to overcome the difficulty.

Consider the notation presented in Figure 2 for describing the

entry and exit vectors at a point. [G,HI(i,j) identifies the exit

vector at the point (i,j) and [A,BI(i,j) identifies the entry vector

at (i,j)--A, B, G, H are all binary variables with permissible values

of zero or one. The two vectors taken together comprise what we

will call the flow vector [G,H,A,B](i,j). This vector completely

specifies the flow through node (i,j). It is with this flow vector

that we will develop a procedure for producing incompressible discrete

fields.
Provided all four variables A, B, G, H are defined at every

point in the lattice, incompressibility is automatically satisfied,

i.e., there is exactly one entry and one exit vector passing through

the point. The constraint of not allowing an exchange of exit(entry)

vectors between two nodes is satisfied provided [G,HJ(i,j) A

[A,B](i,j). The complication is that one cannot arbitrarily specify

four values at a given point, because entry(exit) vectors attached

to one node are exit(entry) vectors for an adjacent node. Denoting

the conjugate of a binary variable, say G, as G' = 1 + G (mod 2),

we can list the consistency relations between nodes for the exit

vector (G,HI(i,j) in terms of the algebraic relations:

G'H'(i,j) = AB (i+l,j)

GH' (i,j) = A'B (i,j+l)

GH (i,j) = A'B'(i-,j)

G'H (i,j) = AB' (i,j-l).
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An analogous set of consistency relations also exists for the entry

vector IA,B](i,j). Thus for every entry(exit) vector explicitly

assign to one node, we implicitly assign an exit(entry) vector at

an adjacent node.

We now describe a procedure for systematically defining the 7

complete flow vector [G,H,A,BJ(i,j) which is consistent with flow

vectors at adjacent nodes. Suppose that one is allowed to prescribe

explicitly exit(entry) elements of the flow vector at a point with

the restriction that H (or B) can be assigned only the value "0".

G( or A) can take on either of the permissible values. This

corresponds to defining an exit(entry) vector pointing toward(away

from) nodes (i,j+l) or (i+l,j). (See Figure 2.) Such an assignment

implicitly defines an entry(exit) vector in the flow vector of an

. adjacent node as follows:

[G,H,A,B] IG,H,A,B]

a) [1,0, , ](i,j) = [ ,0,l(ij+l)

b) 10,0, , J(i,j) = , ,l,lI(i+lj)

c) I , ,l,0](i,j) = [0,1, , ](i,j+l)

d) I , ,0,0(i,j) = [1,i, I ](i+l,j).

Note that, although H and B can be prescribed explicitly as only
"0", they carry the value "l" as elements in the flow vector of the
adjacent nodes. Each of these four possible assignments a) --

is permissible provided that the corresponding elements of the A.-w

vector in the specified adjacent node have not been previously

assigned. For example, were elements A and B at node (i,j+l) defined

by a previous assignment (not necessarily related to node (i,j)),

then alternative a) would not be permitted. ..
The procedure begins at node (0,0). Since we would like to

minimize edge effects in producing our finite, discrete fields we

must assume some "previous" exit(entry vector(s) as partially defining

the four elements of the flow vector at (0,0). Then we proceed to

complete the flow vector with alternatives corresponding to a) --

d). If we continue to nodes (0,I) and (1,0), and then to nodes (0,2),

(1,1), and (2,0), and so on, along diagonals from (0,k) to (k,0),
an incompressible field will be produced a diagonal at a time. Only

the first node along any diagonal (O,k) requires an assumption of

"1previous" assignments from hypothetical nodes outside the finite

field. As the flow vector for each node is defined, the implied

G,H,A,B values for the flow vector at the relevant adjacent node

is also assigned. Then, when the flow vector of that node is to

be specified, it will already contain some assigned elements

- 26'



(a) (b) (C) (d)

I . . .,

Figure 3. Constructing a discrete field. Panels
(a), (b), and (c) illustrate the successive
completing of flow vectors at nodes (0,0), (0,1),
and (1,0), respectively. Both entry and exit
vectors are shown. Dotted vectors are constraints
for nodes not yet addressed. (d) shows the results
after operating on the next diagonal, (0,2), (1,1),
and (2.0).

corresponding to portions of the flow vector defined earlier at an V
adjacent node. Figure 3 illustrates several steps in this process.

As one moves from node to node along a diagonal completing flow

vectors, depending on previous assignments, there will be 0 to 4

remaining alternatives. It is through these remaining alternatives

that the spatial characteristics of the discrete field can be dictated.

Note: either a complete field of exit vectors [G,HI(i,j) or

a complete field of entry vectors [A,B](i,j) is sufficient to fully
describe the discrete velocity field, so our using both the entry

and exit information is redundant. However, this redundancy permits

us to describe the complete flow through a node in terms of information

at that node.

3. Production of Markovian and Correlated Discrete Fields

Our main objective is to produce a discrete analog to ""

twodimensional turbulent flow. Assuming that time as well as space
is defined in discrete units, we can emulate a time-dependent velocity

field as a sequence of latticed fields, whose change from timestep

to timestep is characterized by temporal correlation.

In the last section we discussed a process by which discrete r

fields might be generated. We noted that particular spatial or
temporal properties could be incorporated into the fields through -

the assignment of elements of the flow vector at each point. In V *

this section we describe the production of discrete, time-evolving

fields on which our random walk experiments will be based. In each
case we produce an ensemble of 64 realizations of sequences of fields,

* each sequence consisting of 15 discrete fields (timesteps), each
field in the sequence being generated on a 32 x 32 lattice.
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Two classes of sequences are produced: one, Markovian--!aving

neither spatial nor temporal persistence; the other, "correlated"--

having both spatial and temporal persistence. The spatial properties

of these two classes will be characterized in terms of the

Karman-Howarth longitudinal and lateral velocity correlation functions

f(r) and g(r) (see e.g., Hinze (1975)]. Purely temporal properties

will be given in terms of RE ( T )--the Eulerian temporal correlation

function. "r" and T are separations in space and time and do not

depend on absolute position or time. Note that r and T can take

on only discrete values corresponding to gridspacing and timestepping.

Further, f(r) and g(r) are definable only along the two axis

directions. Use of these functions requires that the considered

fields be statistically homogeneous and "isotropic" in space and

statistically stationary in time. Consequently, we restrict our
attention to fields having these attributes. Of the two classes,

the "correlated" sequences are, of course, more relevant to turbulent

dispersion. However, we treat Markovian fields as a basis for

comparison. We begin with a discussion of the Markovian fields.

Markovian fields are produced with our algorithm by configuring

the flow vector at each point with randomly selected elements,

i.e.,randomly selected vector alternatives a) -- d), as described

in the last section. We discovered it necessary to assign slightly

non-equal probabilities to these alternatives to compensate for a

directional preference of the procedure. But the ensembles of fields

thus produced were found to be empirically homogeneous and "isotropic".

Even a Karman-Howarth-like two-point velocity statistic designed

to test the diagonal directions yielded no irregularities. Potential

"edge" effects--associated with having to preassign some elements

of the flow vector at the leftmost column of lattice points--were

minimized by creating 34 x 34 discrete fields and discarding the

two lower and leftmost rows to yield the final 32 x 32 fields. Refer

again to Figure 1 for a typical field. (
The production of correlated discrete fields is more complex,

because correlation must be introduced both in space and time.

Patterson and Corrsin (1966), working with one-dimensional,
time-dependent discrete fields, introduced correlation by smoothing

Markovian fields with various low-pass filters. But their fields

were compressible. With two space dimensions and the constraint of

incompressibility, their technique does not ensure that an

initially-incompressible field remains so after filtering. So we

require a different scheme.
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In our algorithm, proper definition of the elements of the flow

vector at each point in the field automatically generates correct

incompressible fields. To introduce correlation, we use "preferred"

flow directions at each point in space and time rather than randomly- " 7
selected flow directions as in the Markovian fields. We begin by

defining a field of "preferred" directions which contains the desired

space and time correlations. Then we proceed with the algorithm
to generate the discrete field, using the preferred directions as
much as possible to determine the flow vectors. The extent to which

the "preferred" directions are admissable as flow vectors is the

degree to which the discrete field matches the field of preferred

directions and exhibits the same correlation properties.

The field of "preferred directions" is the mechanism by which

correlation is introduced into the discrete fields and may be generated

in any one of a number of ways. Directions may be continuously

variable and incompressibility need not be satisfied. For example,

spatial and temporal smoothing of a perfectly random field will yield

a satisfactory preferred field.

In this work we attempt to produce correlated, discrete fields

which are suggestive of "real" flows. So, our "preferred" fields

are derived from the Euler (inviscid Navier-Stokes) equations. We

define initial two-dimensional velocity fields in terms of Fourier

modes and integrate the Fourier form of the equations over time,

throwing out the higher order modes introduced by the non-linear

terms. (This simplification was first used by Lorenz (1960) and

by Kraichnan (1963) to study interactions between velocity

wavevectors). We limit the complexity of our fields to six

band-limited velocity wavevectors kl, . .,k 6 : k I, . . .,k 4 are

chosen randomly, and k5 = -kI -k2 and k6 = -k3 -k4 to produce "triad

interaction". All velocity amplitudes and wavevector phases are

chosen randomly. Results are then interpreted on a square lattice to

yield the "preferred" fields mentioned above. In producing the

discrete fields from the Euler fields only the velocity direction
is considered; velocity amplitude is ignored. (Hereafter, we will

refer to the Euler fields as "continuous" fields.) An example of

a continuous field and the resulting discrete field is given in Figure
4. The fields at two points in time are shown. Compare the spatial

persistence of these correlated discrete fields with that of the

Markovian discrete field in Figure 1.

. . . . . .
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Figure 4. A continuous field at two different
times; and the corresponding discrete field.

4. Statistics of the Fields

Based on the exit vectors for the discrete fields and the complete

velocity vectors for the continuous fields, we calculate the

correlations f(r), g(r), and RE (T) for all of our ensembles.

The Markovian fields exhibit some characteristics unique to

incompressible discrete fields. For example, the longitudinal

correlation function f(r) is not zero for all r40. Refer to Figure

5. Rather, it oscillates between zero and a positive envelop which
decreases with r. This result is a manifestation of incompressibility. - •
Consider the calculation of f(l) = <u(i,j)u(i+l,j)> where < > denotes

ensemble averaging over all realizations and all i and j, and u is

the velocity in the i (or X) direction. Let the velocity at a node
* (i,j) be defined solely in terms of its exit vector. Then node (ij)

has only two permissible values of u: +1 , corresponding to an exit

vector pointing to node (i+l,j), and -1, corresponding to an exit

vector pointing to node (i-l,j). For two adjacent nodes (i,j) and

(i+l,j) there are two ways that the u's can be positively correlated: .

u(i,j) = u(i+l,j) = 1, and u(i,j) = u(i+l,j) = -1. However, there

is only one way that the u's can be negatively correlated: u(i,j)
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*Figure 5. Longitudinal and lateral

Morkovian Fiolds velocity correlation functions f(r) and
g(r) for an ensemble of 64 discrete
Markovian fields over 15 timesteps; r

*f(r) is in mesh lengths.

.774 6"

* r~r

=-,uli+l,j) = 1. The only other possibility, uli,j) =Iand

I.-,.. 4 -

u(i+l,j) = -, is precluded by the constraint of incompressibility.ui.=1an

Thus, in calculating f(l), on the average there will be twice as

many +1 contributions to the correlation as there will be -1

contributions; and the expected value of f(1) is positive, not zero

as might be anticipated from a Markovian field. Carrying this analysis "

to larger r's confirms the oscillatory behavior of f(r) for these

discrete, "uncorrelated" fields. An analogous oscillatory result

is obtained for the lateral velocity correlation g(r), as well. Note

that these results are only semi-quantitative; because we consider

just the involved nodes and not the potential constraints due to 0-.1

" surrounding nodes.

Spatial correlations for the correlated fields are shown in

Figure 6. Curves for both the discrete and continuous cases are

• "given. First, note that the oscillatory behavior of the correlations

' for the discrete fields is retained as in the Markovian case. Second,

a substantial degradation of correlation between the continuous and

discrete fields exists. Since the discrete fields were derived from

the continuous ones, we might expect that the spatial correlations .
"-

would be similar. But on reflection, we find that the smaller

correlation extent for the discrete fields is not so surprising.

A "preferred" velocity at a lattice point in a discrete field

is produced from the velocity at the same point in the continuous

field. But virtually none of these lies along one of the four

permitted directions. So a decision must be made as to how the

preferred velocity should be assigned. A deterministic assignment

. .- ...• - - - - . . -".."-"-. . ... .



Figure 6. Longitudinal and
-N 1lateral velocity correlation

____f(r) Discrete Field. functiols f(r) and g(r) for
. f n uFdiscrete"'orrelated fields

------ f~r) Coninuous Fields and their continuous counter-
4 gr) Discrete Fields parts; r is in mesh lengths;

. \Cotinou Fieds results based on 64 realiza-
-------- r) Continuous Fields tions over 15 timesteps. .\.

.

| \,...';.

?. - - -

based on closest permitted direction yields discrete fields whose

• - streamlines are relatively unrelated to those in the continuous fields. ".""4. >

A probabilistic assignment weighted by closest permitted direction ..: :

" .-- '-. - -

Syields fields whose streamlines are more commensurate with the

continuous case, but whose spatial correlations are degraded.

a preferred direction, consider a continuous velocity field consisting l

of uniform flow in a direction of 43 degrees with respect to the .;

x-axis. A deterministic assignment would produce a discrete velocity

field uniform along the x-axis--the closest permitted direction.

A probabilistic assignment, on the other hand, would produce a random "'

zig-zag f low whose average orientation would be 43 degrees. The".".

%4I

spatial correlation of the former is unity--the same as the continuous 4

field; but the correlation of the latter is substantially less. Since

one of our goals is to explore particle dispersion, and particle ":

dispersion is most influenced by streamline geometry we choose the ,'A- [:

latter method to generate the discrete fields.
Figure 7 shows RE ( T) for the continuous and correlated discrete

fields. Again, the correlation for the discrete fields is smaller, ..

because from timestep to timestep the discrete fields are manufactured -.:

probabilistically from the continuous ones. RE ( T) f or the Markovian "
fields is not shown, but of course is zero for T 0, because '
sequential fields are produced entirely independently.

be An incompressible, i-directional-binary, latticed field is

simply an analogy to a "real" field. Here we would like to carry

that analogy further to include the concepts of vorticity'and strain

of unfom lo in a- direction of 43 degrees with respect t the

x-axs. deermnistc asigmen woud podue adiscetevelcit



Rg CT) DiscreLe Field. Figure 7. Eulerian temporal cor-
relationfunction R (T) for dis-

"''',--- . .RC (1) Continuous Fields crete correlated fields and their
S ",. continuous counterparts; T is
O , separation in timesteps; results

based on 64 realizations.
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To implement these definitions for discrete fields we define non-binary
velocities u and v in terms of the flow vector G,H,A,B], where u

= G'H' - GH - A'B' + AB and v Gil' - G'H - AB' + A'B. The velocities

u and v can take on values from -2 to 2 in unit increments. Vorticity

and strain rate are most conveniently evaluated not at the

already-existing lattice points, but rather at pseudo-lattice points

Scentered in each grid-square of the field. Then partial spatial

derivatives may be calculated based on nearest-neighbor velocity
4differences, e.g., au/ 3y = [u(i+l,j+l)+u(i,j+l)-u(i+l,j)-u(i,j)]/2• -

With these definitions we can compare the nature of the Markovian

and correlated discrete fields with respect to vorticity and strain
rate. Figures 8 and 9 show the distributions of values. Not, "'+

surprisingly, the correlated fields are characterized by lower strain b

rate and vorticity indicated by smaller tails and a larger central "

4.peak in the distributions. But, unlike their quantification in

continuous fields, vorticity and strain rate here depend on a fixed ;

length scale--the mesh size, and constant magnitude velocities--one. -,

An interesting feature of discrete fields is that they admit

fields: for example, in terms of distribution of streamline lengths.

Streamlines on latticed fields are unambiguously defined along flow a.

vectors from node to node and fill the lattice. There are a countable

number of them with integer lengths. With finite lattices a streamlineL-

- 'S.-,++ . . . . . .. . . . .. + . . ... .. ... .. o. . . . ...



* _ STRAIN RATE Figure 8. Frequency distribu-

-- -...- VORTICITY tion of strain rate and vorti-

AVERAGED OVER 64 DISCRETE FIELDS--MARKOVIAN city values in discrete Marko-
01 . vian fields.
IhJ

(4
Z.

0,
U

- . 0 6 - , s . e - .in b ., , b. s, m, .. , s a 2 . 6 6

VORTICITY / STRAIN RATE '

STRAIN RATE -

S-VORTICITY Ip

LJ

Zl. AVERAGED OVER 64 DISCRETE VIE'LDS--CORRELATED."

04-

W

VORTICITY /STRAIN RATE i

).

Figure 9. Frequency distribution of strain rate

,' and vorticity values in discrete correlated fields.

i must either close upon itself (a closed loop) or enter and leave

~the domain as an open path. Figures 10 and 11 show the relative

, occurrence of streamlines by streamline length for Markovian and

i correlated discrete fields. Both closed loops and open paths are

~presented.
i ~ These results are difficult to interpret quantitatively because i

the distributions are strongly influenced by the boundaries of the -

*finite fields, i.e., an open path may have become a closed path were
the field slightly larger. However, we can make some qualitative !

. . comments. Markovian fields yield a higher incidence of short.

. paths--especially of the shortest closed path, length four. *. ".

~Conversely, correlated fields typically produced longer paths. (The

longest was 196 lattice lengths!I) Note also that the ratio of !i
occurrences between closed and open paths differs significantly between

the two cases. Because of spatial scale differences, there is much -

more of an opportunity for a streamline in a Markovian field toU

complete its loop within the extent of the finite field than there

i is for a streamline in a correlated field.
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Figure 10. Frequency distribu-
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AVERAGED OVER 64 DISCRETE FIELDS--ARKOVIAN fields.

iis

It ,

I

LATTICE LENGTHS

a.

CLOSED LOOPS

OPEN PATHS

* AVERAGED OVER 64 DISCRETE PIELDS--CORRELATED

w.,pZ

D

s Is " t" gI

.
I

-. , -5% .

LATTICE LENGTHS

Figure 11. Frequency distribution of open and
closed streamline lengths in discrete correlatedfields.

5. Statistics of Particle Dispersion

We now address particle dispersion. On each of our 64 sets

of initial fields, both continuous and discrete, we identify fluid

parcels at relative separations of 1. 2, and 4 mesh lengths. Each

parcel (particle) then moves according to the velocity at its

instantaneous location prescribed by the sequence of time-evolving

fields. Through 15 timesteps we follow the motions of these particles

and record their successive positions. Over the ensemble of

realizations we thus can calculate r.m.s. single particle dispersion

<D2 (t)>h and r.m.s. two-particle relative dispersion <D el (t)>1.

r %,
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Although the principal focus here is on dispersion in

incompressible, latticed fields, it is interesting to compare results

with comparable continuous fields; especially since it is from

continuous fields that our discrete fields are derived. The most

appropriate comparison of dispersion would be on fields whose

statistics were nearly the same. But, as described in the last section,

our discrete fields are not really comparable to their parent

continuous ones, especially with respect to integral space and time

scales. Jin (1984) is carrying out dispersion experiments on more

closely related fields, but the discrete fields he uses are not

directly produced from his continuous ones.

Figure 12 presents r.m.s. single-particle dispersion for four

cases of particle motion: classical random walk, walks on discrete

Markovian fields, walks on discrete correlated fields, and movement

on continuous fields. The particle "walks" by definition have a S

velocity scale of unity. To obtain a rudimentary level of comparison S"

for particle nr-tion on the continuous fields, particles were followed .|

not on the original continuous fields, but rather on those fields

rescaled to have r.m.s. velocities of one. Thus, as seen in Figure

12, all four cases yield an average dispersion of one after one

timestep. "A.

Taylor (1921) deduced asymptotic dispersion statistics for

homogeneous turbulent fields: for small t, <D2 (t)> is proportional

to t; for large t, <D2 (t)>h is proportional to th with a coefficient
depending on the Lagrangian autocorrelation function. Our dispersion

- -- DiscreLe Flelds--corrola.d

.... Discrete Fields--Morkovion -

- ---- Classical Random Walk .'.

.------ Continuous Fields "

* •

0.00 2.06 4.0 .00 8. .0s 10.09 128 4.06 4.

t

Figure 12. R.m.s. single-particle dispersion
D (t) >-for four cases: classical random walk,

walks on discrete Markovian fields, walks on
discrete correlated fields, and movements on related .

continuous fields; dispersion in mesh lengths
and t in timesteps.
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curves for the correlated discrete fields exhibit that form. Initially

<D2 (t)> increases linearly with t, and then slows toward the expected

th limit. Dispersion on the continuous fields proceeds in a similar

manner, but takes more time to reach the asymptotic regime because

of the continuous fields' larger time scale. Consequently, dispersion

is greater for the continuous case. Dispersions for the Markovian

fields and the random walk are identical. Because there is no temporal

persistence in the Markovian fields, single-particle dispersion

coincides with that of a random walk. (Einstein (1905) showed that

a random walk also disperses particles at an r.m.s. rate of th for

large t.)

Twice differentiating the dispersion curves for the correlated

discrete and continuous cases would give the respective Lagrangian

autocorrelation functions (Taylor (1921)]. But since our results
are based on so few realizations we do not perform these calculations.

In contrast, relative dispersion of two particles separated
initially by a finite distance is much more dependent on the spatial

properties of the fields. Figure 13 gives relative dispersion results

for pairs of particles separated initially by 1, 2, and 4 mesh lengths

on continuous and correlated discrete fields. For the first timestep
the statistics of relative particle motion are dependent on only

the Eulerian velocity correlations f(r) and g(r). But, for later

timesteps the statistics depend on a non-stationary Lagrangian
autocorrelation function [Corrsin (1962)]. [See also Brier (1950)

for a treatment of relative dispersion in terms of a sequence of

single, discrete timesteps.]

a. - Discrete Fields

-------- Continuous Fields -"

V

.e .6 4ee .ae .ee i6.e6 2.6 '46 I .n6

Figure 13. R.m.s. relative dispersion <D2 (t)>
between two particles on discrete correlated fields %.

and their continuous counterparts; dispersion
* in mesh lengths and t in timesteps. Initial

separations are given by t=O.
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In the continuous fields for small t, <D e (t)> grows linearly

with t with a coefficient proportional to [l-f(r 0 )], where ro is

the initial separation. At long times (and at large separations)

the particles move independently, and relative dispersion reduces

to /2 times the single particle dispersion rate [Corrsin (1962)].

Relative dispersion on discrete fields behaves differently and

demonstrates the unique properties of latticed, incompressible, binary

velocity fields. Whereas particles on continuous fields move with

variable speed and direction, particles on discrete fields move with

unit speed and only orthogonal directions. The solid curves in Figure

13 shows relative dispersion on discrete fields. At small times

the rate of relative dispersion is greatest for small initial

separations and least for large initial separations--contrary to

the continuous case. (This phenomenon does not extrapolate to zero

separation where, of course, the particles will always move together.)

The result can be explained as follows. When particles are close

together, say one mesh length, and must move only along lines of

the grid, any relative movement will increase their separation to

at least V5 mesh lengths. Incompressibility precludes their approaching

one another; geometry defines the minimum change in separation. At

larger initial separation distances, however, particles can approach

one another; in these cases the geometry admits to lesser changes

in separation. These dispersion characteristics cannot be inferred

directly from the Eulerian spatial correlations f(r) and g(r) as

was the case with the continuous fields. Consequently we find that

an additional factor plays a role in dispersion on discrete fields--

at least for small separations. Once particles are far enough apart,

their dispersion characteristics are at least qualitatively similar

to those on continuous fields.

6. Extending the Work to Three-Dimensional Discrete Fields

Two dimensional discrete fields are relatively easy to display,

relatively inexpensive to generate, and relatively convenient to

experiment with. However, the applicability of two-dimensional

velocity fields to real flows (let alone the applicability of discrete

two-dimensional velocity fields) is tenuous. Insofar as turbulence

is a fully three-dimensional process, a more appropriate analogy

is obtained in three dimensions. Further, some of the idiosyncracies t
found in the present discrete fields may be reduced when working

with the three-dimensional case.
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Figure 14. Example of a three-dimensional discrete
Markovian velocity field. Lattice planes are
offset for clarity. -i

As a prelude to future work, we demonstrate the potential

extension of our current work to three dimensions with Figure 14, "..

a portrayal of a 6 x 6 x 6 discrete Markovian field.

7. Conclusions

This work represents a first attempt at using discrete fields

as a research tool for turbulent dispersion. Working with a wider .

range of Eulerian space and time scales, estimating additional

Lagrangian properties of particle motion, and, of course, expanding

to the three-dimensional case are obvious extensions of this work.

Possibly basic to this research is the study of the mathematical
properties of discrete fields. Currently, we cannot fully separate

the properties of the flow and particle dispersion from the

idiosyncracies of the latticed velocity fields. The relationship

between a "walk on a random field" and a random walk needs

study--especially with respect to the constraint of incompressibility.

Treating long-chain polymers as linked particles moving on discrete 4..

fields might be a non-turbulent application.
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G. Jin for considerable assistance in developing this work; and to
acknowledge the Society for Statistical Geometry.

This work was supported by the National Science Foundation,
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Transition and Turbulence in Fluid Flows andLow-Dimensional Chaos

K.R. Sreenivasan

Department of Mechanical Engineering, Yale University
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Recent studies of the dynamics of low-dimensional nonlinear systems with chaotic " 4'

solutions have produced very interesting and profound results with several implica-

tions in many disciplines dealing with nonlinear equations. However, the interest of

fluid dynamicists in these studies stems primarily from the expectation that they

will help us understand better the onset as well as dynamics of turbulence in fluid

flows. At this time, much of this expectation remains untested, especially in 'open'

or unconfined fluid flows. This work is aimed at filling some of this gap.

Measurements made in the wake of a circular cylinder, chiefly in the Reynolds

number range of about 30-10", have been analyzed to show aspects of similarity with Q.2.

low-dimensional chaotic dynamical systems. In particular, it is shown that the ini-
tial stages of transition to turbulence are characterized by narrow windows of Chaos... ,._.

interspersed between regions of order. The route to the first appearance of chaos

is much like that envisaged by Ruelle & Takens; with further increase in Reynolds

number, chaos disappears and a return to three-frequency quasiperiodicity occurs.

This is followed in turn by the reappearance of chaos, a return to four-frequency

quasiperiodicity, reappearance of chaos yet again, and so on. We have observed sev-
eral alternations between order and chaos below a Reynolds number of about 200, and

suspect that many more exist even in the higher Reynolds number region. Each window

of chaos is associated with a near-discontinuity in the vortex shedding frequency

and the rotation number, as well as a dip in the amplitude of the vortex shedding

mode. It is further shown that the dimension of the attractor constructed using time

delays from the measured velocity signals is truly representative of the number of

degrees of freedom in the ordered states interspersed between windows of chaos; it is ... -.'. .. ,7
fractional within the windows of chaos, and is higher than those in the neighbouring

regions of order. Our measurements suggest that the dimension is no more than about

20 even at a moderately high Reynolds number of 10", and that it probably settles

down at about that value.

1. Introduction
a. General remarks

The principal parameter of incompressible viscous flows, in situations free of ..

body forces, is the Reynolds number, Re. Observations show that for given (fixed or

time-independent) boundary conditions (and external forces if applicable), the Elow .,

: * . , • , .. ~.. . - -. . ° . • . ..



is unique and steady for Re < Recr, where Recr is a certain critical value of Re;

this is the steady laminar motion. As Re increases, the fluid motion may first be-

come periodic, quasiperiodic, and 'eventually' chaotic. (Chaos is defined better in

section 3 and in the appendix, but we shall also loosely use the word to designate

a state in which the details of motion are not reproducible.) TI haotic state is

not necessarily turbulence as generally understood - and we shall discuss this short-

ly - but it is believed that one attains the turbulent state if the Reynolds number

is taken to a sufficiently high value. The goal of the stability theory is to under-

stand how the evolution from the laminar to the turbulent state occurs, while tur-

bulence theories aim at unearthing and predicting the mysteries of the 'fully) tur-

bulent state itself.

It is generally believed that the key to both these problems lies in the Navier-
Stokes (NS) equations, and that no additional hypotheses of fundamental nature are

required for describing either the onset of turbulence or its dynamics. Much effort

has thus been spent on mastering the NS equations. However, the difficulties, both

analytical and computational (at high enough Reynolds numbers), remain intimidating.

In the recent past, claims have been made that autonomous dynamical systems

with small number of degrees of freedom, typified by

db. f ; ei), (1.1)

ii

where the bi characterize the state of the system (the so-called 'state variables'),

i is a small integer, and c are the so-called control parameters (analogous to Re

in the NS equations), help us towards attaining both the goals mentioned above. It

is to a discussion of aspects of these claims, via an example of fluid flow behind
circular cylinders, that this paper is devoted. .

b. Remarks on degrees of freedom, genericity, and spatial chaos

Several questions arise immediately. One natural question concerns the rele-

vance to fluid flows of low-dimensional dynamical systems. To give some meaning to

the concept of degrees of freedom in fluid flows, let us approximate the velocity

vector u appearing in the NS equations as

j ik'xuj = (k ajQk;t)e k  - ( = 1,2,3), (1.2)

-k
where the wave number vector k is an element of a discrete (finite or infinite) set.

The NS eauations can then be written formally as "1
Dai(k;t)

at - F(ai; Re), i = 1,2,....N (large). (1.3)

The number of the coefficients ai which, for given boundary conditions for the fluid

flow, are capable of variation in time can now be called the degrees of freedom of
the fluid flow governed by the NS equations (to within the approximation implied in .

(1.2) and (1.3)). Since the laminar flow is uniquely specified by the boundary

(and external force) conditions, this number is zero. If Re increases just past

% -.



Recr, only a few degrees of freedom are excited, and hence it appears that, at least

in the positive neighbourhood of Recr (to be called transcritical region henceforth),

consideration of these few degrees of freedom is adequate.

An interesting hypothesis (which we shall examine in this paper) is that the

number of degrees of freedom (not necessarily in the sense described above) remains

small even in (certain type of) high Reynolds number turbulence.

Assuming that the number of degrees of freedom excited in the transcritical re-

glon is indeed small, we must ask whether the behavior in this transcritical region

does not depend on the broad nature of the right hand side of equations (1.1) and

(1.3). The most often cited justification for the belief that this dependence is in

some sense of secondary importance comes from the work of Ruelle & Takens [1] and

Newhouse, Ruelle & Takens [2] which indicates that chaos sets in abruptly following
a few Hopf bifurcations, and that this behavior is 'generic' or 'typical'.

The words 'generic' and 'genericity' find their frequent use in the literature -

on dynamical systems, and so, it is perhaps useful to discuss the concept briefly.

Ruelle & Takens make this concept quite specific for the vector fields they were

considering, but we shall be content with a rather loose qualitative description.

Consider as an exoampZe, a class of functions possessing continuous derivatives up to

a certain order, and satisfying differential equations of the type (1.1). Proper-

ties of this class of functions which are the rule and not the exception, and which

do not depend on the precise nature of the right hand side of (1.1), are called ge-

neric. The conclusions of Ruelle & Takens strictly hold for an idealized mathemat- I" .'

ical system, and whether the concept of genericity is powerful enough to embrace fluid

systems is not clear. One should attempt to answer this question by looking at the

specific form of F in (1.3) and/or by observing the actual bifurcations in experi-

ments on laminar-turbulent transition.

Even if the concept of genericity does hold for fluid flows, it is not obvious

that interesting nongeneric phenomena do not occur. To make this notion specific,

let us consider the following rather far-fetched example. Suppose we link (as in our

example above) genericity to the existence of velocity fields possessing continuous

derivatives of a certain order. Those generic properties may be irrelevant to a turb-

ulent boundary layer since one cannot exclude the possibility that at some moment

during bursting near the wall (a key event sustaining turbulence production) this 0%

smoothness condition is destroyed in spite of viscosity. It is therefore sensible to

keep In mind that nongeneric behavior is neither uninteresting nor unlikely, espe-

cially when conditions such as configurational symmetry, vicinity to wall, play an

important role in the evolution of the flow. -

Finally, one must mention the predominant role played by spatial chaos (and

order!) in turbulent flows of fluids. An important characteristic of fluid turbu-

lence is random vorticity, whose presence necessarily implies that the velocity vec-

tor is a random function of position. Autonomous dynamical systems of the typ i (1.1),typ

on the other hand, do not contain any space information. While temporal chaos in

fluid turbulence may in some sense be symptomatic of spatial chaos, it is clear that
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autonomous dynamical systems have little to say directly about the latter, at least

at the current state of development.

c. 'Closed' and 'open' flow systems

Notwithstanding these remarks, it is necessary to note that several beautiful

experiments now exist in the Taylor-Couette flow (e.g., Refs. 3, 4 and 5) and the

convection box (e.g., Refs. 5 and 7) which have lent support to the notion that the

behavior of fluid flows in the transcritical region could be similar to that of low-

dimensional dynamical systems. This in itself is undoubtedly remarkable, but it should

be remembered that these two flows are special in the following sense. In all 'closed

flow' systems - of which the convection box and the Taylor-Couette flow are two pop- r -

ular examples - the boundary is fixed so that only certain class of eigenfunctions

can be selected by the system; this does not hold for another class of flows we may

call 'open flow systems' - for example, boundary layers, wakes, jets - in which the

% flow boundaries are continuously changing with position. Thus, while in closed flow

systems each value of the control parameter (for example, the rotation speed of the

inner cylinder in the Taylor-Couette problem) characterizes a given state of the flow

globally, this is not true of open systems. Consider as an example the near field of-. •

a circular jet. For a given set of experimental conditions, the flow can be laminar

at one location, transitional at another and turbulent at yet another (downstream)

location. This usually sets up a strong coupling between different phenomena in dif-

ferent spatial positions in a way that is peculiar to the particular flow in question.

Secondly, the nature and influence of external disturbances (or the 'noise', or the

'background or freestream turbulence') is more delicate and difficult to ascertain

in open flows: the noise, which is partly a remnant of complex flow manipulation de-

vices and partly of the 'long range' pressure perturbations, is not 'structureless'

or 'white', no matter how well controlled. Finally, it is well known that closed flow

systems can be driven to different states by means of different start-up processes;

for example, different number of Taylor vortices can be observed in a Taylor-Couette

apparatus depending on different start-up accelerations [8]. This type of path-sen-

sitivity in a temporal sense does not apply to open systems, where the overriding

factor is the path-sensitivity in a spatial sense (i.e., the 'upstream influence').

d. Scope of the paper

On balance, all these considerations suggested to us that it is desirable to
%

look at some open flows to determine the extent to which dynamical systems can assist

us in our goals of understanding transition and turbulence in fluid flows. This is

the motivation for the work described in this paper, which is to be viewed more as a

progress report than as a complete account; obviously much more remains to be done.

Our approach is to select well-known flows and follow the bifurcations as closely aspossible. (We reported some of our earlier work in pipe flows in [9] and wake work

in [10].) Surprisingly, while much work has been done in these flows in the past, an

44
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amazing amount of new information can still be acquired that will facilitate clari-

fying the relation between low-dimensional chaocic systems and fluid flow transition

and turbulence. Part of the reason for this is undoubtedly that the details one

looks for are often dictated by contemporary concerns.

-o

2. Experiments

a. Experimental conditions

Although we have conducted experiments in wakes, jets and pipe flows, we choose."',.[" !

to discuss here only our wind tunnel experiments in two-dimensional wakes behind cir-

cular cylinders. The Reynolds number range covered is from about 30 (slightly below

the vortex shedding value) to about 104. Two wind tunnels - one of the blower type

and one of the suction type- were used. Nylon threads, stainless steel wires and (
aluminium tubes, stretched tightly across the width of the wind tunnels, were used

as wake generators. The aspect ratio varied between about 70 and 2000. The basic *-*

experimental conditions are summarized in Table 1.

Table 1. The flow configuration and experimental conditions
.J. y

wake generator ..'

d x/d ;.y/d aspect ratio wind tunnel characteristics

0.24 5 1 2000

0.24 50 1 2000 auction type; turbulence
0.36 5 1330 level 2= 0.2% at speeds

of interest
4.0 5 1 170

0.36 11 1 70 blower type; turbulence
level varied from 0.68%
at speeds 1* 1 m/s to
0.062 at speeds 10 m/s

All velocity signals were obtained with a hot-wire operated on a DISA 55M1l con-

* stant temperature anemometer. The speed of the tunnel was monitored with a Pitot

tube connected to a calibrated MKS Baratron with adequate resolution ( and an aver-

ager). The hot-wire and the Pitot tube were mounted on a specially designed slim
holder.

Some of the data to be presented in this and later sections is in the form of

power spectral density of the streamwise velocity component, u. Nearly all the sig- y'.
nals were digitized at sufficiently high frequency (60 kHz or more) to ensure that,

whenever the signal was periodic, at least 30 digitized points were contained in one
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period of the basic frequency (so that it was a good representation of the analog

signal). Further, the entire length of the signal (which contained at least 100 cy-

cles of the basic frequency) was Fourier transformed at once using the Cooley-Tukey

FFT algorithm. The overriding criterion was that the spectral resolution should be

as good as possible (here, between 0.5 Hz and 2 Hz compared with shedding frequen-

cies of the order of 2000 Hz or more) and that one must not miss any low frequency

modulations.

b. The background turbulence

We have worked with varying levels of background turbulence, and found that the

occurrence of different stages of transition reported here is in itself not terribly

sensitive to the turbulence level as long as it is not too high; larger turbulence

levels blur the distinction between different stages and alter the details somewhat

erratically. One should, however, strive to eliminate all strong discrete frequency

components in the background turbulence structure.

Figure la shows a typical Dower spectral density of u in the freestream at Re

60. (The ordinate is the logarithm to base 10 of the power.) The 'noise' (though

S 1I (a

-2 • I

-' 
I i ;

jr 0 1000 Z0O0 3000 4000 SOO 6000 ?000 W0 9000
0 r 1. .. .

(b)

' fof the-

a OWo 2000 300 4000 sooo 6000 7000 8000 9000€:..
Frequency (tiZ) , ..

FIGURE 1: Normalized power (or frequency) spectrum of (a) noise of the instrumenta- '*"
tion and digitizer, plus freestream disturbances, Re =60; (b) instrumentation and %
digitizer noise only with no flow.L
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devoid of any discrete peaks) does not appear to be 'white' but has a much larger

low frequency component. Figure lb shows the power spectral density measured with

the flow completely shut off, but the hot-wire and other electronic instruments op-

erating the same way as before. It is clear that the anomalously high low frequency

content is not representative of the flow itself, but of electronic and computer

noise. Allowance should thus be made for this fact in the interpretation of the

spectral data to follow.

3. Results from Spectral Measurements A,
a. Route to chaos: the first appearance

Figure 2 shows the logarithm (to base 10) of the normalized power spectral den-

sity of u at a Reynolds number (based on the freestream velocity and the diameter

of the cylinder) of about 36, which is approximately the onset value for vortex shed-

ding. Notice that the instrumentation and other noise level is around 10
- , while

the peak of the spectrum (marked fl), corresponding to the basic vortex shedding fre-

quency behind the cylinder, is at round 10- ' , about 74 orders of magnitude higher

than the noise level! The sharpness of the peak (as well as of the other peaks to

the right of fl which are the harmonics of f1) is excellent.

fI

'il "' FIGURE 2: Normalized frequency spectrum of

.u at Re - 36. Note that the power P is

plotted on a logarithmic scale (to base 10).
.- ,-4 The peak at f I 590 Hz corresponds to the

.---- -- -- -- vortex shedding, and the subsequent strong
• __- - peaks above the noise level are simply har-

Slow M 40M ' 6M = No monics of fl"

Frequency (Hz)

At a somewhat higher Reynolds number of 54, there appear a number of peaks in
i

the spectrum (figure 3a); as shown in the expanded version (figure 3b) all the peaks #72
can be identified precisely in terms of the interaction of the two frequencies - the

basic vortex shedding frequency fl and another incommensurate frequency f2 "

At an Re - 66 the spectrum (figure 4) shows broadened peaks with no overwhelm-

ingly strong discrete components - quite a different situation from that of figures

2 and 3. One might say, in the language of dynamical systems, that chaos has set in!

The sequence of events leading to chaos are so far literally like that envisaged

, in the Ruelle-Takens-Newhouse (RTN) picture of transition to chaos, and so, a brief

digression roughly describing this picture is quite useful. (The appendix is an in-

"a troduction to the basic terminology.) With increasing Re, the steady laminar motion
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40 000 2f0 f6 0 2 0SFrequency (

FIGURE 3: (a) Normalized frequency spectrum of u at Re 54. In (b), the frequency

range 0-2200 Hz is expanded. All significant peaks in (b) are simple combinations of

the vortex shedding frequency f1 (corresponding to the most dominating peak), and an-

other incommensurate frequency f2 " After satisfying ourselves that there are no sub-

harmonics of f1 (and that 119.02 Hz is unrelated to the line frequency or spurious

oscillations of the cylinder) we have picked f2 by hypothesizing that the peaks near--"eat fmust be f +  The value of fthus obtained accounts for every other sig- ',

nificant peak as shown in (b) - actually to 4 or 5 decimal places for reasons we do

not understand! At least part of the reason for the relatively low noise level (com-

pared with figure 2) is the increased signal level.

loses stability and becomes periodic with frequency f1 (say); the power spectral den-

sity will have (as in figure 2) a peak at f1 (and its harmonics), and the phase dia-

gram will show a limit cycle behavior. Loss of stablility of this new state yields

a quasiperiodic motion with two independent frequencies, f1 and (say) f2 " The spec-

tral density will now show fl, f2 and various combinations mf 1 nf2 (as in figures

3a, b), and the phase portrait will be a two-torus. Further increase in Reynolds
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number yields a quasiperiodic motion with three frequencies (three-torus). New-

house, Reulle & Takens [2] argue that even a weak nonlinear coupling (of a certain

variety!) among the three frequencies is likely to result in chaos or a strange at-

tractor (see appendix), one of whose symptoms is an increased broadband content (see

figure 4). This contrasts the classical picture of Landau, according to which turbu-

lence is the asymptotic state of increasingly higher order quasiperiodicities.

Phase diagrams provide complementary information on the sequence of events lead-

ing to chaos. To construct phase diagrams, it would seem that one would require the

measurement of N independent variables (in general, a hopeless task!), but embedding

theorems like those of Takens [111 justify the use of a single measured variable.

From the measured local velocity u(t) - for example - one constructs a d-dimensional

diagram from the vectors {u(t), u(ti + T) ..... u(ti + (d-l)T)}, i = 1, ... , T ,.:

being a time delay whose precise value in a certain wide range seems to be immaterial.

According to the embedding theorems, the phase diagrams constructed in the above man-

ner will have essentially the same properties as the one with N independent variables,

as long as d > 2N + 1 (a-. cgZ -veptions to this now commonly assumed philosophy

are not hard to concoct). In practice, d is increased by one at a time until the

properties of interest become independent of d.

.,

-It i ie

-- FIGURE 4: The first appearance of chaos

at Re = 66. The broadband-nature implies-14 ... . cho;ostofcasde ntrl u
Note: f is the vortex shedding frequen chaos; onset of chaos does not rule outcy. At most another frequency can per- the existence of spectral peaks. (Note:Shaps be discerned in the sectr M. This does not signify some high order

sctri/m. quasiperiodicity as dimension and entropy" s =0 ,50 2M n calculations of section 4 show.)

Frequency (Hz)

4 . -'S ,-i

Figures 5, 6 and 7 show respectively the plot of u(ti+ T) vs u(ti) at Re = 36,

54 and 66, and can be considered as projections of the phase diagrams on a two-dimen-

sional plane. The limit cycle behavior at Re - 36 is evident, the scatter visible

in the figure being partly due to experimental noise (see figure 2) and partly due

tothe jitter in the signal. Further, a Poincare section reveals no discernible

structure. The situation is thus basically periodic.

About two years ago (October 1982) when we first started constructing phase dia-

grams in this manner, we were unaware of any literature on embedding theorems,
but were guided solely by elementary ad-hoc considerations.
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C06 FIGURE 5: The phase plot from the

..4 . .velocity signal u at Re - 36, show-
00.. - ing limit cycle behavior. The time
I delay T - 10 sampling intervals;

0.02 the starting point t is arbitrary.
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FIGURE 6: (a) The phase plot from u at Re F4 54. T -10 sampling intervals. (b)
Poincari section for the phase plot of (a). This is simply a plot of u(t.) vs
u(t " with f spaced exactly 1/f2 apart. I. %
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0.06.

FIGURE 7: The phase diagram for Re f

.0- 66. T = 10 sampling intervals. The con-
tinuous curve is now the result of

0.02 joining successive data points (done
- - -. ,for clarity).
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At Re - 54, although the projection of the phase diagram is complicated in ap-

pearance*(figure 6a), a Poincare section (figure 6b) yields a limit cycle, reinfor-

cing the fact that only two degrees of freedom are present. On the other hand, not

only is the projection of the phase diagram at Re = 66 complex (figure 7), but also

its Poincare sections (not shown), no matter how defined. This, as well as the frac-

tional dimension of the attractor (see section 4a) show that the signal is indeed

chaotic.

(As equally valuable measures of chaos, one could evaluate the Lyapunov exponent

(characterising the exponential divergence of nearby trajectories) or the Kolmogorov

entropy (which, for typical systems, equals the sum of positive Lyapunov exponents).

Limitations of various kinds have prevented us from measuring the Lyapunov exponent

- such measurements for a Taylor-Couette flow have been made by Brandst~ter et al. Z %

[51 - but we do discuss some entropy measurements in section 4d.)

This progression towards chaos - underlying the possible presence of a strange .

attractor - proceeds much like that proposed by Newhouse, Ruelle & Takens [2]. It

is thus extraordinary that the 'generic' behavior indicated by Ruelle & Takens for an

idealized mathematical system should have a nontrivial bearing on a rather complex

fluid dynamical system!

a It should be noted that few would feel comfortable in designating as turbulent

the signal we have recognized as chaotic. Clearly, to the extent that a turbulent -'-

flow must possess spatial randomness, we cannot say much of value as to whether the

flow at Re - 66 is turbulent or not without a global survey of the flow field at this

Reynolds number. Further, if one defines turbulence as a high Reynolds number phe-

nomenon (as is often done!), it is tautologically true that the signal does not re-

present turbulence. Further, a look at the signal (figure 8) would prevent someone

with an everyday familiarity with high Reynolds number turbulence from accepting it

Note that the trajectory resides most often in the upper right quadrant, but only ,.?
rarely strays away into the lower left quadrant. This behavior in the phase plane
can be related to the finite skewness of the signal.
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as turbulent. Nevertheless, we would like to suggest that the signal shown in fig-

ure 8 is indeed random (for example, in terms of algorithmic complexity required to

specify it [12])with a well-defined probability density (see figure 9; for a compar-

ison with similar data at 'large'Reynolds numbers in the far wake, see Thomas [13]).

What this means is that even atlow enough Reynolds numbers, the interaction of only

a few degrees of freedom leads to randomness! It is also pertinent to point out

that at least in some respects the signal of figure 8 resembles a narrow band pass

filtered turbulent signal at high Reynolds numbers. (Perhaps the word 'preturbu-

lence' also used commonly in dynamical systems literature, is sufficiently useful to

designate the signal such as the one shown in figure 8, and its dynamics.)

b. Chaos and its aftermaths .. "%...

No qualitative change occurs between Re - 66 and about 71. Soon thereafter the

system becomes reordered. For example, the spectral density at Re - 76 shows (essen-

9,. tially) nothing but discrete peaks again (figure lOa). These peaks, shown in detail

in figure lOb, can all be identified with great precision as arising from the inter- %

action of three irrational frequencies. (That there are definitely three independent

frequencies can also be seen from Poincare' sections (not shown here) and the dimen-

sion of the attractor discussed in section 4b). After a small increase in Reynolds

number to about 81, one can see the onset of the broadband spectral content (figure

11), and we may consider chaos to have set in again!
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FIGURE 10: Reordering at Re - 76. (a) The measured power spectral density of u, and

(b) its details in the frequency range 0-1250 Hz. Note that all peaks above noise
level can be represented by combinations of three frequencies f, f2 and f3 " This

conclusion can certainly be influenced by the finite FFT resolution, but our belief

in the accuracy of this statement comes also from dimension calculations (section 4).
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The system reorders itself around an Re of about 90, and we have discussed else-
where [101 that this reordered state is quasiperiodic with four frequencies. (That

this is the case will be demonstrated also by dimension measurements in section 4d.)

Chaos sets in again at an Re - 140, followed by yet another reordering around an Re

- 143. In fact, this sequence of return to chaos and reordering continues for much

higher Reynolds numbers although it becomes progressively more difficult with in-

creasing Re to distinguish experimentally between the two states.
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Two related points of importance emerge. First, there do exist quasiperiodic

motions with three or four independent frequencies; just like Landau's quasiperiodi-

cities, the Ruelle-Takens picture of transition 4s also not the whole story. Second,

transition to turbulence (at least in the temporal sense) is characterized by regions

of chaos interspersed between regions of relative order. Each of these deserves at

least a brief discussion.
4

c. Note on quasiperiodicities with more than two frequencies

We have shown that the route to the lowest Reynolds number chaos occurs in our

experiments precisely as postulated in the RTN picture of transition. On the other

hand, our experiments also show that quasiperiodicities with three (and possibly

four) frequencies do exist. This type of disagreement with the RTN scheme has been

noted earlier in the Taylor-Couette flow [14] and the convection problem [15]. It

is thus pertinent to inquire whether there are (in some sense) exceptional conditions

- to be satisfied for the RTN scheme to hold. Greborgi et al. [16], who address this

question in a specific numerical experiment, suggest that the three frequency quasi-

periodicity is indeed quite likely to occur in practice, and that the special pertur-

bation required to destroy this state (as in the RTN scheme) is unlikely. Haken [171

discusses this issue at some length and concludes that if the frequencies possess a

certain kind of irrationality with respect to each other (or, more precisely, the

so-called Kolmogorov - Arnold - Moser condition holds), bifurcation from a two-torus

toa three-torus is possible. Both these discussions are strictly relevant to systems

with no externally imposed noise (or fluctuations), a condition that does not strict-

ly obtain in experiments (especially open systems). Our own experience is that the

precise nature of even small amounts of noise (some of which is controllable in our

wind tunnels and some of which is not!) has an influence on the evolution of the

system (for a brief discussion of this influence, see subsection 3e). It is not

hard to visualize that in our experiments the detailed conditions of intrinsic noise

itself could have altered from before to after the first occurrence of chaos. Clear-

ly, this is an area for further work, both experimentally and theoretically.

d. Windows of order and chaos

Figure 12 summarizes the changes occurring in the low end of the Reynolds num-

ber range we have considered. The shaded regions indicate windows of chaos, and the

question marks indicate the uncertainty and difficulty in quantifying what we believe

are reordered states.

At least two questions arise: What is the mechanism that permits the reordering

of a chaotic state? What determines the length and location of the windows of chaos?

Our understanding of these matters is rather limited, but even within these limits,

some comments seem called for. Let us consider the first question now, and relegate

the second one to the next subsection. The observed alternation between chaos and

order has been known to occur in several low-dimensional dynamical systems; for ex- '.
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FIGURE 12: Window of chaos and order

ample, Lorenz equations [18], and spherical pendulum [19]. In these systems, the

occurrence of reordering is independent of external noise. The numerical experiments

of Matsumoto & Ysuda [20] show that chaotic orbits could be unstable to external

noise, and noise addition to deterministic chaos (i.e., chaos characteristic of de-

terministic dynamical systems) yields an ordered state in some cases. They specifi-

cally consider the so-called Belousov-Zhabotinskii (BZ) reaction and some variants

of the logistic model. Roux et al. (21] find windows of chaos and order in their

experiments on the BZ reaction. .0

In experiments on open systems, it is hard to ascertain whether the return to

order is tied intimately to external noise or the increased degrees of freedom asso-

ciated with the appearance of chaos itself. In any case, the analogy between this

situation and increased eddy viscosity in turbulent flows appears to be more than

superficial: addition of high frequency modes results in a lowering of an effective

Reynolds number and increased stability of the flow.

Though we have not made detailed spectral measurements at higher Reynolds num-

bers, it is our contention that the succession of order and chaos in a wake continues

indefinitely even at very high Reynolds numbers (with the caution that order must

now be interpreted to mean spectral sharpening). Roshko [22] pointed out several

years ago that order reappears in the Reynolds number range of 106. More recently,

the fluctuating lift force measurements of Schewe [23] on a circular cylinder showed

that the spectral density of the lift coefficient was broad at Re = 3.7X106 (upper

end of transition) and became increasingly narrow until, at Re = 7.1x106 , it was

quite sharp, rather like a narrow-band-pass filtered signal. Although the fluctua-

ting lift force can at best be related to the squared fluctuating velocity filtered

via the transfer function corresponding to the response of the circtilar cylinder, its

behavior is nevertheless indicative of the flow itself in the vicinity of the cylinder.

e. The vortex shedding frequency and windows of chaos

Consider now the variation of the vortex shedding frequency fl with Reynolds ".

number (figure 13). The frequency does not vary monotonically with Re but shows sev-

eral more or less distinct breaks. Such breaks have been noted before [24,25,26],

and perhaps most convincingly demonstrated in a beautiful experiment by Friehe [27].
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FIGURE 14: Expanded version of figure 13 near A. e shows a data point in another
series of experiments where the window of chaos began at an Re rd 130.



Friehe varied the Reynolds number continuously at a small rate and obtained on an

x-y plotter the frequency-Re variation directly. Although the appearance of the

breaks has been disputed [28], our own data, presented here and elsewhere [10], sup-

port the conclusion that discontinuities do indeed appear.

Our interest here is in pointing out that the occurrence of these breaks coin-

cides with the windows of chaos. To establish the connection better, we may consider

in figure 14 the details of the break marked A in figure 13. Just upstream of the

break, the spectral density is quite ordered (four-frequency quasiperiodicity) while

it is broadband until the end of the break region c-inciding with the upper end of

the window of chaos; to the extent we can ascertain, the frequency spectrum shows a

reordering immediately after the break.

The data shown by crosses in figures 13 and 14 were all obtained from one ex-

perimental run. In a repeat of the experiment the following day (for example) we

found the same general features, except that chaos set in at different Reynolds num-

bers; the windows of chaos were also of different widths. The filled circle in fig-

ure 14 was obtained in a second series of experiments. It is seen that this point

falls below the first set of data at the same Re, but it falls on the backward extra-

polation of the line corresponding to the reordered state (Re > 143) in the first

set. It is hard to tell the differences between conditions in the two experiments

without extensive documentation, but there are reasons to believe that the second

experiment was conducted in a somewhat noisier environment. We thus speculate that

the location as well as the widths of the windows of chaos are to some extent deter-

mined by noise characteristics - in a way that is not well understood at present.

It is interesting to note from figure 14 that the ratio f2/f1 (the so-called

rotation number), where f2 is the second largest independent frequency, changes its

value abruptly across the narrow windows of chaos. Figure 15 is a plot of the rota-

tion number with Re. It is seen that the number changes abruptly across all the win-

dows of chaos, but only slowly within regions of order. %

-.. 2
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FIGURE 15: The variation of the N*
-0.0 rotation number with Reynolds

40 s 120 160 number.
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f. The amplitude of the vortex shedding mode and chaos t.%

Since reordering is associated with the reemergence of stronger spectral peaks, La

it is natural to expect that there must be some relation between the amplitudes of the

various modes and the occurrence of order and chaos. Figure 16 shows the amplitude of

the vortex shedding mode (or the f1 frequency) as a function of velocity. (The ampli-

tude AI is expressed as a fraction of the freestream velocity U, but is given here to

an arbitrary scale.) It is clear that 0 indicating order coincides with a local peak

in A1 , C indicating the onset of chaos coincides with a local minimum, and, finally,

RO indicating reordering coincides with the reappearance of a peak. Except for the

first time that reordering occurs, every successive reordering is associated with a

general lowering of the amplitude of the vortex shedding mode.

0.15
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0.10
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A 0. 05 L 

' '

FIGURE 16: The amplitude of the vortex shed-

ding mode as a function of Re. 0 is order,
C chaos and RO is reordering; within a window k %
of chaos, 0 and RO may in general indicate

0 Idifferent states of order.
50 100 150 200

Re

4. Results from the Dimension of the Attractor

a. The dimension

It is clearly worth inquiring whether there is any property of the attractor

that successfully describes in some way the many subtle changes that occur in the

frequency spectra and the related properties discussed in section 3. It appears

that there indeed is such a quantity, namely the dimension of the attractor. Loose-

ly speaking the dimension of the attractor is related to the number of degrees of

freedom - and hence its importance. The concept of the dimension is highlighted in

studies of dynamical systems, and we may briefly digress here to discuss its meaning

before presenting results from our measurements. It should be pointed out that, a-

part from our own earlier measurements of the dimension for turbulence attractors

[9,10], such measurements have been made by others in the Taylor-Couette flow [5]

and in the convection cell [29].

Let us consider an attractor (constructed as already discussed in section 3)from

a measured temporal signal u(t) that is embedded in a (large) d-dimensional phase

space. Let N(C) be the number of d-dimensional cubes of linear dimension C required

to cover the attractor to an accuracy C. Obviously, making c smaller renders N larger,

but if the limiting quantity

~...................... ,,.... ,..., ...... .,... .................- .................. . .... ...........



D Lim log N(C) (4.1)
1+o log( )

exists, it will be called the dimension of the attractor. An important characteris-

tic of a strange attractor is that D is small even though d is large. We should be

interested in knowing whether transitional and turbulent signals have this property.

To see what the dimension means, let us write (4.1) as ,.

N(c) - -D (4.2)

that is, if one specifies D and the accuracy c to which we need to determine the at- fz

tractor, we automatically know the number of cubes required to cover the attractor.

The only missing information will now be the position of the cubes in the phase space.

Thus, D can be considered as a measure of how much more information is required in

order to specify the attractor completely; the larger the value of D, the larger is L-.
this missing information.

In general, the dimension D, as defined in (4.1), is fractional for strange at-

*" tractors, and it has been called the fractal dimension by Mandelbrot [30] who has

contributed a lot to our understanding of the quantity. As defined in (4.1), D is a

geometric property of the attractor, and does not take into account the fact that a

typical trajectory may visit some region of the phase space more frequently than

others. Several measures, taking this probability into account, have been defined

- and are believed to be closely related to the dynamical properties of the attrac-

tor. The most well-known among them are:

(a) the pointwise dimension

(b) the Grassberger-Proccacia dimension.

If the attractor is uniform, that is, every region in the phase space is as likely

to be visited by the trajectory as every other, then the above two measures equal D

defined by (4.1). Otherwise, they are generally smaller than D.

Let S E(x) be a sphere of radius e centered about a point x on the attractor,

and let p be the probability measure on the attractor. Then, the pointwise dimen-

sion is defined 131] as

dim log PIS(x)] (4.3; ~~ d(X) C o (4.3) .

p eo logeC

or PIS (x)] ~ dp (4.4)

Grassberger & Procaccia [321 have defined another measure V which is related to

the dimension of the attractor, as well as the entropy (see section 4d). The pro-

cedure for computing V is as follows:

i) Obtain the correlation sum C(c) from:

N
Lim 1

S i-j-l 1
i~j
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where H is the Heaviside step function and u - uj is difference in the two vector

positions u and u on the phase space. Basically, what C does is to consider a win-p i .-j . .
dow of size C, and start a clock that ticks each time the difference lu..1 lies

within the box of size c. Thus, one essentially has

CM imR2 {number of pairs of points (ij) with Iu l C)

(ii) Obtain v from the relation [32]

C(C) - V as ef o. (4.6)

In practice, not all components of u are known for constructing the phase space,
but perhaps only one component, say um . As we discussed in section 3, one constructs-"

a d-dimensional 'phase space' using delay coordinates
;.-.r

{um(ti), U(t +T), .... um(ti+(d-l)T)), i = 1, ...,k,
4 m

where, again, T is some interval which is neither too small nor too large and k is

large (in principle, infinity!). Since one does not a priori know v, one constructs

several 'phase spaces' of increasingly large value of d and evaluates V for each of

them; V will first increase with d and eventually asymptote to a constant indepen-

dent of d. This asymptotic value of v is of interest to us as a measure of the di-

mension of the strange attractor.

We have computed both dp and V as described above, using the streamwise velo-

city fluctuations u up to an Re of 10 and the delay coordinates. Our confidence

in the numerical values of these measures of dimension is very good when they are

less than about 5 or 6, but becomes increasingly shaky at higher values. However,

we do believe that they are reasonable, judging from their repeatability and the sev-

eral precautions we have taken (such as taking the proper limit as L-o and using, in

a couple of cases, double precision arithmetic in our computations). It would be

interesting and useful to evaluate .he dimension at high Reynolds numbers, but such

calculations are likely to be of uncertain value (unless perhaps some carefully se-

lected combination of experimental and computational conditions obtains): with in-

creasing Re, the newly excited degrees of freedom can be expected to be of smaller

and smaller scales, and to properly accommodate them in the dimension calculations

requires that one must in practice look at increasingly smaller values of e (see e-

quation 4.6). Such efforts will very soon be frustrated by instrumentation noise

and digitizer resolution problems.

b. Data for Re < 100

It is convenient to consider first the data for Re < 100 (figure 17). Concentra-

ting on the data in the ordered statesonly, we may conclude the following. At Re

36, where there is only one independent degree of freedom (corresponding to the peri-

odic vortex shedding) - see figures 2 and 5 - the dimension of the attractor turns

out to be about 1. When only two frequencies are present (figures 3 and 6) a. Re
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FIGURE 17: Variation of the dimension of the attractor with respect to Reynolds
numbers. Note that the dimension is about I when there is only vortex shedding (Re
36), about 2 when there are only 2 frequencies (Re = 54), about 3 when there are 3
frequencies (Re = 76), about 4 when there are 4 frequencies. The dimension jumps
to higher noninteger values in the windows of chaos.

S. 54, the dimension is about 2. At Re -76 where there are three dominant frequencies

(figure 10), the dimension is three to within experimental uncertainty. Lastly, at

Re -91 where there are four frequencies present, the calculated V is very close to

4. Thus, to within computational uncertainties, it is seen that the dimension of

S: the attractor is a reasonable representation of the number of degrees of freedom.

Now getting back to measurements in the windows of chaos, it is clear that the

*first appearance of chaos at Re - 66 is characterized by a jump in the dimension (to

about 4.4 from 2 characteristic of the two-frequency quasiperiodicity), followed by

a return to a value of 3 in the region of three-frequency quasiperiodicity. Similar-

ly, the dimension of the attractor in the second chaotic window is about 4.8. As we

* discussed earlier, the dimension of the attractor in the chaotic windows is a frac-

tion.

c. Higher Reynolds number data

Figure 18 shows the results of the dimension calculations up to an Re of about

*10". Both v and d increase to about 20 or so at an Re of 104, although the increase
p

Is not always monotonic. In fact, our calculations seem to suggest that the dimen-

Ssian settles down to about a value of 201

If It is true that the dimension of the attractor retains, even at high Reynolds

* numbers, its meaning as an indicator of the number of dynamically significant degrees

*of freedom, common wisdom tells us that the dimension of the attractor should gen-

ly; further, its value is far lower than Re which is the classical estimate (see

e..rally --nc -reae -it ] ;. .I Re In cotrst the dimesio doe no"nraeotnos

Landau & Lifshitz (33])for the number of degrees of freedom in a turbulent flowd. It
......1 -.
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may be that the constancy of the dimension at higher Re is simply an artifact of re-

solution and computational problems, but if the result is genuine instead, it should

provide an inc~entive for a suitable reformulation of 'turbulence problem'.

d. The Kolmogorov entropy

The Kolmogorov entropy has the property that it is positive for a chaotic sig-

nal, zero for ordered signals and infinite for a random signal with a space filling

attractor. As already mentioned, there are conjectures that the entropy equals the

sum of positive Lyapunov exponents, and hence, unlike the dimension D, is a dynamic ...

measure of unpredictability of the motion.

Suppose the d-dimensional phase space housing the attractor is partitioned into
d

boxes of size C . Let p'i° 1 i2  ... I id) be the joint probability of finding at

.4 ~~time t -Tin box il, uat time t - 2'r in box i . . . .  uat im t=dr nbo id

Re ... ...a.im..d n o id

a bThe Kolmogorov entropy is then defined (34] as

4 Lin Lim Lim 1
K s a omtao dp(ilp ...i )n p(i1 , .. i .(4.7)

rassberger Procaccia (35] have defined a quantity K which is close to K and fur-

ther has the property that K2 > 0 is a sufficient condition for chaos. Without going

into too many details, we follow (35] and note that it can be computed by first ob-

taining C(c ) as in Eq.(4.5) in section 4a for various d, and forming the ratio

K (e ,n (4.8)2,dc Tn C d+l(c)

where C d indicates C for dimension d. In the limit,

Lim N
d-~ K 2(e) - K.2

Table 2 gives K2 for Re - 66 and 81 within the first two windows of chaos.

For comparison, the table also lists K2 for the Henon map from (35).

t... t..................................... .".."
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Table 2: The Kolmogorov entropy

SK 2

u at Re - 66 0.22

u at Re - 81 0.24

The Henon map 0.325 ± 0.02 :. .

5. Discussion of Results

We have shown that several features of transition to turbulence behind circular

cylinders are in essential agreement with the behavior of low-dimensional dynamical

systems. We emphasize that many details discussed above in the near-wake region hold
also at around x/d = 50, although less conspicuously.

One particularly important feature of this work is the discovery of windows of

chaos interspersed between regions of order: these latter regions are three and four-

frequency quasiperiodicities in the low Reynolds number range up to about 140 (possi-

bly even higher!). Not all observations we have made can be understood within the

present framework of chaos and dynamical systems, but we find it amazing that the

dynamics of fluid motion which we believe are particularly governed by the NS equa-

tions should be at all represented by extremely simple systems. One aspect of this

work is the fine resolution (in Reynolds number, frequency domain, as well as in the

phase space) with which measurements have been made. It seems to us that even finer

resolution, especially within the windows of chaos and regions bordering them, will

perhaps disclose even more interesting aspects.

We have shown that, during early stages of transition, a strong connection (spec-

ulated previously, but never shown to be true conclusively) exists between the dimen-

sion of the attractor and the degrees of freedom as inferred from power spectral den-

sitles. Provided this interpretation is true also in windows of chaos and (moderate-

ly) high Reynolds number turbulence, our results suggest that the degrees of freedom

are not too many even up to Reynolds number of the order of 10
4 . Our numerical cal-

culations based on Schewe's data lead us to expect that the dimension of the attrac-

. tor, as computed according to (4.4) and (4.5), is not high even at higher Reynolds

numbers corresponding to the fully turbulent state (Re ; 106). If the attractor is

sufficiently low-dimensional, a clever projection of it can perhaps be used to our

advantage. (If the attractor dimension is even as high as 20, however, no matter
what projection one devises, it will perhaps look uniformly dark!) At this stage it
is not clear how one could use this information, but, without entering into a detailed

discussion, we may point out that it lends credence to concepts embodied in renormal-

ization group theory, slaving principle, or, closer to home, large eddy simulation

or orthogonal decomposition techniques.

We thus believe that there is much that we can learn about transition and turbu-

lence from chaos theories. In the immediate future, these theories provide a strong6L
• ~63 ;. .



motivation for looking into newer aspects of fluid flow phenomena; discoveries of

close correspondence between fluid flows and low-dimensional chaotic dynamical sys-

tems will undoubtedly prove useful in the sense that the rich variety of results from

dynamical systems can be brought to bear on fluid flow transition and, perhaps, even

turbulence. In the long run, the hope is that they will help us in coming to grips

with the eternal problem of turbulence, namely, the enormous amount of 'information' "

that seems to be available to us! Perhaps we can then model, even at high Reynolds

numbers, at least local behaviors by low-dimensional dynamical systems.

Do we then conclude that the key to the understanding of transition and turbu-

lence lies totally in low-dimensional dynamical systems? We think that such state-

ments are optimistic at best and misguided at the worst. Apart from the fact that

the spatial structure of turbulent flows, which is their single most important char-

actertistic, lies outside the scope of dynamical systems theories - at least as they -.

stand today - there is a lot that they do not or, perhaps, cannot, tell: for example,

they do not tell us anything about the origin and physical structure of the various F°'-,

bifurcations that can occur, or how the drag coefficient varies with Reynolds number.

To answer these and similar questions of practical interest, we suspect that we have

to revert to the NS equations!

One final comment should be made. It would be useful to make a concurrent flow

visualization study and relate the various findings reported here to the spatial char-

acteristics of the flow. It is unfortunate that we cannot use much the extensive

flow visualization observations made by others (for example, Gerrard [36]) because

the details from one experiment to another do not precisely match.
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Appendix
Let bi, b2, ..., bn be the state variables of the system (1.1). In an n-dimen-

sional space spanned by b1, b2, ..., bn, each point determines the state of the sys-

tem completely at a given time, t. As t evolves, we obtain a continuous sequence of

0-1 points which form the trajectory of the system. As to, the bi's need not go to in-

finity, but may terminate (in two dimensions) either at a node or a focus or on a * *

- limit cycle or, in higher dimensions, on to a more complicated object. This object
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on which the trajectory terminates is called an attractor if all other trajectories

starting near the said trajectory converge to the same object as t- o. (That is, the

attractor is the limit set of a representative point in phase space. Thus, an attrac-

tor attracts all nearby trajectories.)

If the system is stable and steady the attractor is a point - a node if the mo-

tion is critically damped (figure Al) or a focus if the motion is damped but oscilla-

tory (figure A2). If the system executes a periodic motion, a limit cycle is obser-

ved in the phase plane (figure A3). Quasiperiodic motion with two incommensurate

frequencies results in a two-torus (see figure A), with the entire surface of the

torus covered by the trajectory eventually. A projection of the torus on to a plane

FIGURE Al: Stable node. (point
attractor)

b1

a,.4 ..

____________FIGURE A2: Stable focus. (point

i Cosut

FIG URE A3: Limit cycle.
- b1b2

AW

/v /A I / VVIb bb

/, . .....:

t FIGURE A4: Two-torus. (perspective view)
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may have different shapes depending on the orientation of the plane, but it is clear

that a section of the torus, say, by the plane A in figure A4 (the Poincare section)

will yield a limit cycle. To obtain such a section in practice, one has to intercept

the trajectory each time it crosses the plane (or 'sample' the system at the frequency

f and at fixed phase), and plot b1 and b2 (say) corresponding to these periodically

sampled data. The phase portrait corresponding to the quasiperiodic motion with three

frequencies is a three-torus, and so on.

The attractor has been called a 'strange attractor' if (roughly speaking) it is

a complex surface repeatedly folded onto itself in such a manner that a line normal

to the surface intersects it in a Cantor set. That is, if one successively magnifies

regions of this intersection which appear, at some level of resolution, to be entire-

ly 'filled', one sees regions of 'emptiness' interspersed between regions of 'occupa-

tion'. One cannot test this property of the strange attractor directly if it is con-

structed from experimental data (because of noise and the finite resolution of the

instrumentation), and so, one uses several of its other properties to determine its

occurrence. For example, any two neighboring trajectories on the strange attractor

will diverge exponentially apart for small t (the so-called sensitivity to initial L

conditions, measured by positive Lyapunov exponents or the Kolmogorov entropy); the

so-called dimension of the attractor (see section 4) is generally a non-integer; the

spectral density of the temporal signal used to construct the attractor will have

broadband components orders of magnitude above the instrumentation and other noise

levels.
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Some Contributions of Two-Point Closure to Turbulence

Jackson R. Herring

National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA

I Since their introduction over thirty years ago, two-point-moment

closures have offered promise of providing practical and theoretical

information concerning certain aspects of turbulent flows. More recent-

ly, both experiments and direct numerical simulations have suggested a

high degree of organization (coherent structures) in even homogeneous

flows, which contradicts--at least in its extreme form--the assumption

of near Gaussianity central to closures. We examine here some successes

and failures of closure for several problems including three-dimensional

turbulence, and quasi-two-dimensional flows of the sort employed in geo-

physical context.

We begin with a brief discussion of the theoretical foundations of

two-point closures, which are based upon modified pertubation theory or
variational methods. We then consider what closures have contributed to

the following problems: (1) the decay of homogeneous turbulence and

scalar variance, (2) the return to isotropy of two- and three-dimension-

al flows, (3) two-dimensional flows at high Reynolds number, and (4)

thermal convection between slip boundaries.

The results suggest that closures--overall--are sufficiently quan-

titative that in most cases the ease with which they may be performed

(as compared to a full simulation) and the probability of their contain-

ing valid information make them a useful tool for considering turbulent

flows.

1. Introduction

A central problem in the theory of turbulence is the prediction of

the distribution of turbulent eddies that emerge from a simple initial ,. *.

state of Gaussian chaos. This is the problem posed--for example--in

Batchelor's (1959) monograph, to which the early theories of Heisenberg

(1948), Oboukhov (1941), and Kovasznay (1948) were addressed. At that

time, there was perhaps hope that the detailed shapes of the eddies

played only a secondary role, and it would be possible to determine

their size distribution (in the sense of Fourier modes) without knowing

very much about what constituted precisely the coherent structures ot
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the flow. Such a characterization is reasonable for flows that depart

weakly from Gaussianity. The approaches mentioned above were heuristic,

relying upon dimensional as well as physical reasoning in fixing the

functional forms that give energy transfer in terms of energy spectra,

and to fix the empirical numbers entering the theories.

These heuristic theories pivot on the idea that the small scales

act on the larger as an eddy viscosity. That such interactions can be

so characterized is rooted in the same general concepts used in statist-

ical mechanics to derive viscosity itself: the statistical independence

of large and small scales. It remains a central concept in the more

elaborate spectral theories whose results are the focus of the present

paper. Their remaining ingredients are: (1) the conservation con-

straints of inviscid flows, and (2) the use of experiments to fix numer-

ical constants.

As noted by Kraichnan and Speigel (1962), these early theories

lacked an equipartitioning tendency, which--at least in a certain test-

case--may be demonstrated as a rigorous consequence of the no.i -linear

and pressure terms. The particular test-case consists of the Euler

equations (zero viscosity) confined on a finite wave-number range. To

fix ideas, consider the (complex) Fourier amplitudes of the velocity

field u(k,t) on a wave number range (0 < k < ko ). Then, (as first

suggested by T. D. Lee [19501) the real and imaginary components of u(k)

constitute independent degrees of freedom of a conservative system, and
in equilibrium (steady state) each degree of freedom shares equally the

total available energy, E. In three dimensions this leads to an energy

spectrum,

E(k) = 3 {Ev /k 0 (k/k) (1.1)

Although our test-case exists only in a computer, it is nonetheless

important to check that any proposal for E(k) equilibrates as (1.1) for

v-0, and (o < k < ko ) . Isotropy is of course simply angular equipar-

N titioning.

Equipartitioning and eddy viscosity concepts may be combined to
give a plausible guess of how 3E(k,t)/at behaves if k is much smaller

than the energy containing range:

3E(k,t)/3t - T(k,t)= k A{E)-(v + veddy )k2E(kt) (1.2)

Here A(E) and Veddy(E) are yet-to-be-determined functionals of S(kt).

(1.2) is the only (analytic) form of T(k,t) available as k--> 0 if we

assert equipartitioning (for v-T-0) and eddy viscosity. As we show

shortly, (1.2) alone suffices--in large measure--to determine the decay

of total energy, Ev(t);
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E ( = fodkE(k,t) (1.3)

One of the earlier formal theories free of empiricism was the

quasi-normal approximation proposed originally by Proudman and Reid

(1954), and by Tatsumi (1955). The defects of this early theory are

well known (see, e.g., Monin and Yaglom, 1975; Orszag, 1974, for

summaries). However, later theories such as Kraichnan's (1959) direct

interaction (DIA) approximation and its Lagrangian history variants

(LHDI) are numerically only slightly more complicated, so that in prac-

tice a numerical code that will solve the quasi-normal approximation .

will--with only minor additions--also solve the DIA. The important

point about these theories (the QN and DIA) is that they are free from

empiricism, and directly generalizable to inhomogeneous problems such as

shear flow and thermal convection. For completeness, we have recorded

the DIA in the appendix for the special case of homogeneous and isotro-

pic turbulence. We also have recorded there other more practical and

simpler approximations, to be used in subsequent sections.

We now discuss how the formal closure is related to simpler heur-

istic procedures, and to equipartitioning. First, it is straight-

forward to demonstrate (1.2) from the DIA, by using suitable expansion

of the right-hand side of (A.2) about k--> 0 (see, e.g., Kraichnan,

1976; Lesieur and Schertzer, 1978; Herring et al., 1982). The result

for the functional A(E(k)} so obtained has a simple interpretation in

terms of how the theory represents Navier-Stokes dynamics. Thus, ,

A(E}k4 stems from the k-->O expansion of the Fourier transform of-:.;

fdx"dt"<u.Vu} (x){u-Vu}s(x" )>GG(x",t";x',t')

a
--> (14/15)k 4 dq/q2]o dsE(p,t,s)E(q,t,s)G(k,t,s) (1.4) '.JP

f 0 0

with respect to (x-x'). In (1.4) (alS is an incompressible part of a,

and <F>G evaluates the relevant moments as if u(x) were multi-variate k' '

Gaussian. The (time) integral of G(x,x';t,s) represents the time during ft

which the force, (uVu) acts to accelerate u(x,t). Eq. (1.4) has the

-: form typical to Brownian motion theory: the acceleration (au/at) is

proportional to the mean-square random force (u0Vu), integrated over a

time typical for the force to act (JdsG). The eddy-viscuous term in

4% (1.2) is necessary to restore energy conservation if the modeling of

(u.Vu) is via a random Gaussian field, u(x). Of course, u(x,t) is not

Gaussian, but the above formulas emerge from a formal perturbation ex-

pansion in which the Gaussian part of u is assumed dominant.

Further insight into the closures is provided by examining its be-

havior at scales much smaller than the energy containing range, and
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making suitable expansions for large k. This is illustrated by consi-

dering a typical term that arises in the evaluation of E(k,t) (see Eq.

(A.3) of the Appendix):

fdpB(k,p,q)E(p)E(jk-pj)

If k >> ko (ko = the energy containing wave number), we may expand

E(Ik-pl) about = 0, and retain the leading order term. Collecting all

such terms (to order k2 ) gives for the transfer function T(k):

T(k) " '/kik /akk-2Ek)/-(k)] , (1.5) ..

where t(k) " ll/(k)

kc 1/2
and p(k) {fo dpp 2E(p))

The above transfer function is close to Leith's diffusion approximation

(1968), except for the non-local nature of the diffusion coefficient.

Eq. (1.5) seems a plausible model for E(k,t); it possesses a proper

(k-5/3) inertial range, and a mechanism for equilibration of energy in

k. However, a closer examination of its predictions shows it to be only

order-of-magnitude accurate. Further, the large scale equipartitioning

properties are wrong.

2. The Decay of Total Energy and Scalar Variance

We first turn to an old problem: the decay of total energy

and--for a passive scalar--the variance. Much has been written about

this simple problem, both theoretically and experimentally. Perhaps the

best source of experimental information on this point is the paper of

Corrsin and Compt-Bellot (1967). We recall that most recent experiments

concerning the decay of kinetic energy suggest that E (t)-t-n, with

n-(l-l.5) being the typical value. This aspect of turbulence decay has

been explained by a number of theoretical ideas (see, e.g., Monin and

Yaglom (1978) for a review). However, the concepts of equipartition, as

discussed above, have some distinct predictions to make that are not of-

fered by other approaches. To see how this happens, we first note from

(1.2) that if the initial (t=O) spectrum behaves (as k--> 0) as

E(k,O)--> kn, then a short time later E(k,t)--> kn ', n' = 4 for n>4 -.

and n' = n, l<n<4. Then to first order:

E(k)=Ck n , k<ko (2.1a)

2/3k5/3 k>ko (2.1b)

where aJoE(t)/at = - -2vfodkk2 E(k,t).
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In (2.1a) (2.1b), ko and C are related so that E(k) is continuous

across ko . To complete the story, observe that if E(k)-->C(t)knl as

k-->0, then (1.2) implies C(t) is independent of t, provided n<4. If

n=4, the argument breaks down, and more detailed analysis is needed to

determine C(t). The problem is considered in Lesieur and Schertzer

(1978). Briefly, if n>4, t(t) is determined by (1.4). Dimensionally,

this is Eko- 5; the coefficient must then be determined by numerical

integration of the closure. Their result (using the EDQNM) is:

E(t)-t p , p=2(n+l)/(n+3), n<4, -t-
, n>4. (2.2)

y measures the magnitude of the input term (1.4). They estimate y~.16,

p=1.37; however, the value of p(4) is a closure-dependent number. It is

of interest to note that the actual inertial range slope used (the

correct -5/3 or the incorrect -3/2 (DIA) is irrelevant to (2.2)). This

point is discussed in more detail in the Appendix. The above calcula-

tion is similar to that given by Corrsin (1951), except that now there

are some additional constraints implied by (1.3). We make two comments

about these simple considerations. First, if the initial spectrum rises

very sharply (n>4) at t=0, the (modified) Von-Karman p=1.37 law takes on

a quasi-universality; any spectrum sufficiently steep initially will
ihave p=1.37 at later times. Secondly, if at t=0, n<4, (1.2) suggests

such a power law remains--as a fossil--for all t.

As noted by Schertzer (1980), the above discussion uses only the

rudiments of closure, as contained in (1.2). That the detailed spectral

calculations confirm (2.2) is actually somewhat fortuitous. If we apply

the above arguments to two-dimensional flow, the equivalent of (1,2) is

Ak 3 instead of k 4 A. Suppose, for example, that E (k,0)-k, and we

assert, using the two-dimensional equivalent of (1.2), that C is con- .7,

stant. Then we may use the large k analog of (2.1b) (i.e., E(k)-k-3 ),
and the near constancy of mean-squared vorticity to infer that kO is

also a constant. But this is at variance with Batchelor's (1969) self-

similarity solution E(k)-V 2 tF(kVt), where V is the R.M.S. vorticity. -'b

Since Batchelor's theory uses only self-similarity and conservation of

enstrophy for inviscid flows, and since these principles are also con-

sistent with the closure, the k range must intrude significantly toward
k--> 0. A numerical study of the closure in two dimensions shows E(k,t)
as in Fig. 1. We note that the dominant small k shape becomes k, con-
sistent with Batchelor's theory. Thus, the two-dimensional spectrum

possesses a higher degree of universality than the three-dimensional,
because of the extra inviscid constraint. The two-dimensional problem

is discussed in more detail in Lesieur and Herring (1984).

72• , ** • •



3Fig. 1. Energy spectrum E(k,t)
t 0 13= for two-dimensional turbulence for

several t, measured in initial large-
scale eddy turn-over times. (E(k,O) =

* \ k/(1+k)4 . Notice the evolution from
k to k3 at small k. This is contrary
to three-dimensional turbulence for
which anyn spectrum beginning at small

__ _ __ k with k , n<4 preserves its small k

t 43 71 shape, according to Eq. (1.2). After
Lesieur and Herring (1984). .$-
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Of perhaps more interest is the joint decay of turbulence and

passive scalar. In this case, we may inject the scalar at quite differ-

ent scales than that of the velocity field, and ask for dependence of

*the scalar spectrum on the energy. One interesting but simple aspect of

this problem is to characterize the scalar decay rate, 0 (t)/E 0tM in

terms of the corresponding decay rate of the velocity field, and possi-

bly other aspects of the velocity-scalar spectra. This problem has been

studied experimentally (Warhaft and Lumley, 1987; Sreenivasan et al.,

1980) and theoretically (Corrsin, 1951; Larcheveque et al., 1980; Kerr

and Nelkin, 1979; and Herring et al., 1982). An interesting parameter

is the decay ratio, r, defined by:

r = ( /E )/( /Ev) . (2.3)
0 0 v V

We recall Corrsin's proposal r'r(L /L )2/3, where the L's are integral

length scales for the fields, and r-1. We may derive this relation if

E(k) has an inertial range, and if Lv L

The closure may be used to make quantitative predictions for (2.3).

To this end, we introduce profiles (Ev(k),Ee(k)), which agree with

(Ev(k) and Ee(k)) at k<<kve and also for k in the inertial range:

Ev(k) av (k/ko)n 2/3 ko 5  k<k
.2/ k-5/3

= av e2/3 k- 5/ 3 , k>ko

with similar expressions for E0(k). We may now compute r:

r - (av/ae)(ko/kv)2/3Fo/Fv, (2.4)

where
-v= Jiv(k)dk / fEv(k)dk, F feE(k)dk / fE(k)dk

From (2.4) we note that the more rounded Ee (k) is near k6 , relative j
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Fig. 2. Decay of a scalar field variance spectrum 2E6 (k,t) L
after injection into high Reynolds number(R =2000) turbulence. The
initial EO(k,O) = 6(k-ks), where ks = the dissipation scale of the
turbulence. Curves are labeled by run times t after initial injection.
During the time shown, Ev(k,t) changes insignificantly.
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Fig. 3. Decay ratio r as a function of Lv/Le, where the L's are
the integral scales of the velocity and scalar fields. Dashed line
marks the trajectory of the run of Fig. 2. Other curves are for low RA
(20-50). Note that the Corrsin prediction (Lv/LO)2/ 3 pertains only
to the large RA run. The explanation seems to be that at low RA the
scalar is sujected to the whole velocity field, and not to only a frac-
tion (L./L) 2  as at large RX as shown in Fig. 2. After Herring
et al. (1982).



to Ev(k), the larger r. Fig. 2 shows results of a TFM calculation in

which the scalar is injected in the dissipation scale of Ev(k). Note

that as time proceeds, E8 (k) is entrained towards smaller k by the

equipartitioning mechanism discussed in Sec (2). The behavior of r(t)

during this calculation is shown in Fig. 3 along with other lower

Reynolds number runs. The latter apparently do not conform to (2.4),

and are more nearly straight lines. The value of r from the large R

calculation is r=2.1, although other calculations for which the scalar

spectrum is centered initially near the peak of E (k) give r=l.62.

4 3. Return to Isotropy

We have already indicated that the two-point closures include a

tendency towards isotropy as an aspect of their equipartitioning proper-

ty. This has been examined via closure by Herring (1974), Schumann and

Herring (1976), and Cambon et al. (1980). The first order of business

is to examine the formal basis for the proposal of Rotta (1951) that an

homogeneous flow relaxes toward isotropy linearly, if the initia. de-

parture from isotropy is small. Usually this proposal is stated as:

D<uiu >/Dt = - C (c/E) <uiuj> , (3.1)

where we have omitted the viscuous contribution for simplicity. Here

D/Dt denotes the substantial derivative, and C is a constant of order

unity (usually taken as C=1.4-1.1, by turbulence modelers). A deriva-

tion of (3.1) from more basic closures seems formidable. We may compare

two-point closures with numerical predictions of C(t), as given by Ii  .

(3.1). Such a comparison (with DIA) for axi-symmetry is presented in

Fig.4. The initial conditions are stated in the figure.

2.0

1.6

,.3".,''" i

1.4 SS " =-

1.2

C' 1.0 Fig. 4. Evolution of the
"Rotta" constant C(t) (see .9

equation (3.1) for direct nu-
merical simulations (the light

DIA solid lines) and the DIA (the
04 heavy solid line). Eight sim-

ulations were necessary to ob-
tain an accurate representation

V 0.0I of C(t) for the numerical sim-
0 2 3 4 ulation. Here E(k,o) -k4exp

t Vo/A 0  (-k 2 ) R (0)=30.
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The results are plausible, but a closer examination suggests that

(3.1) is something of an oversimplification in several respects. First,

the decay rate, C , depends on the symmetry of the initial field; axy-

symmetric turbulence and shear flows clearly must be characterized by'-

different C's. Secondly, (3.1) can only be expected if the turbulence

length scales do not change significantly during the decay studied. The

second point may be appreciated if we consider a stationary isotropic

turbulence field into which a small anisotropy is introduced. Since the

turbulence eddy turnover time decreases with increasing wave number, we
expect the small scales to isotropize faster, leaving an isotropy at
large scales only. Since there is no limit to the large scales, the

decay will proceed progressively slower with time, leading to an alge-
braic (t-P) decay of anisotropy instead of an exponential as implied

by (3.1).

To illustrate some implications of the closure, we can make rough
expansions of the wave number interactions at different scales, as idi-
cated in Sec. I above (see Eq. (1.5)). For three dimensions, the for-

malism is somewhat obscure, so we state results here in two dimensions
only, where the results are more transparent (Herring, 1975). The clo-

sures lead--roughly--to the following simple picture of the relaxation
of the spectral Reynolds stress, A(k): Ell'

DA/Dt = -(l/8){j(KE(,())/3,c} . p 2 dpa(p)T(p) - U(K)A(,K) . (3.2)

Here I is a local isotropization rate, and T(k) represents the average

time the large scale strain acts to distort the isotropic component

(E(k)). Both are computable from the theory (T-1/p, and p-r.m.s. large '."i

scale strain). We note that (3.2) may be expected on heuristic grounds;
anisotropy is produced by distorting isotropic i-sized eddies by large

scale anisotropy (the first term), while local interactions cause a
. dissipation of anisotropy. Further, if E(K) is steeper than Kc- (its
* two-dimensional equipartition shape) the anisotropy at K has the same
* ."sign as that at larger K, and vice versa.

4. Two-Dimensional Turbulence

Beginning with the numerical studies of Regallo and Fornberg
(1976), it has become increasingly clear that the decay of strictly
two-dimensional turbulence may be very non-Gaussian, especially at small

scales. The more recent studies of McWilliams (1984) have reinforced
this impression, and have helped to delineate in some detail the charac-

teristics of the coherent structures and their emergence from initial

Gaussian chaos. The spectra of this highly intermittent flow are

a. steeper than the closure-predicted (ln(k/kl))-1/ 3k-3 , and it is not yet
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clear if it is strictly a power law or, indeed, if there exists a

universal shape independent of initial conditions. On the other hand,

randomly forced flows, with sufficient damping, may be quite close to

Gaussian for a rather wide range of scales. It remains to be seen if

such flows are sufficiently non-linear to be of interest.

These problems are of considerable significance in meterology,

where the two-dimensional system serves as the Aimplest analog of large-

scale planetary motions (Charney, 1972; Lilly, 1983; Gage 1979).

To discuss these issues in a quantitative sense, we may introduce

an effective Reynolds number, R:

R = E(t) v(VU(T/f-dkv(k)E(k) • (4.1)

Here V(t) is the r.m.s. vorticity, and u(k) - K 4 is a "hyper viscosity," I
which allows for the dissipation of V a small scales. In many numerical

experiments v(k) is sharply peaked at high k, so as to provide for a

long span of dissipationless large scales in the numerical study. For

the earth's atmosphere, we estimate R - 10. Current numerical

simulations (256x256 spectral resolution) reach only R 1 100, even those
that utilize a hyper viscosity to reduce the needed wave number span.

Fig. 5 and Fig. 6 show a comparison of direct numerical simulations and

the closure (TFM), for forced, dissipative flow (Fig. 5 for forced-

Nt.O t=2

W.

IWI'
' a.

I00 I0* k 102

Fig. 5. Comparison of (256x256) numerical simulation for random
forcing at ko=20, and modified viscosity u(k)=yo+y k4,compared to
theory(TFM, described briefly in the Appendix). Alter Herring and
McWill ams(1984).

Fig. 6. Comparison at late time of numerical simulation to the
TPM for decay of two-dimensional flow. Resolution of simulation is
256x256, and modified viscosity is v=2.xl0-ek 4 . Enstrophy dissipationis maximal at t-4. After Herring and McWilliams (1984).



dissipative flow, and Fig. 6 for decaying flow). The agreement for the

forced case is quite satisfactory. Here, R = 10. Notice that the

actual slope in the (enstrophy) inertial range is closer to k- 4 than

k- 3 . The former is a particular prediction of Saffman (1968), and

appears in all two-dimensional low R calculations. For this case,

measures of non-Gaussianity are small (i.e., <(Vxu) 4 >/< (Vxu)2 >2 -3.

This is not the case for the decay experiment for which

<(Vxu) 4 >/<(Vxu)2 >2 "40 at late times. We note in this case a strong

disagreement between theory and simulations. A closer examination of

the vorticity field shows that it consists of intense vortex regions,

interspersed between quiet regions, where the vorticity is small. The

decay (of enstrophy) process here consists of merging (and near merging)

of these vortex regions, with vorticity dissipation at the time of merg-

ing. The spectral shape--at large k--is much steeper than that pre-

dicted by the theory. A closer examination of the decay experiment

shows that theory and experiment are in good agreement for t less than

the time at which the enstrophy dissipation achieves its maximum.

Both cases can be understood by arguing that the disruptive effects

of random stirring prevents the formation of coherent structures in a

considerable neighborhood of the stirring wave-number. It may be that

in the atmospheric application, the energy input mechanism (baroclinic

instability) simulates--roughly--the random stirring, which would re- -..

store to some extent the validity of theory.

5. Convection

Thermal convection is probably the simplest inhomogeneous flow to

which to apply the theory, since the conditions of axisymmetry are more

manageable. Moreover, if slip-boundary conditions are used on the con-

fining plates, the flow becomes quickly turbulent just beyond the criti-

cal Rayleigh number, Rc=657. This is a rather surprising and recent

result (see, e.g., Zippalius and Siggia, 1983).
Fig. 7 shows the vertical velocity field plan form for a numerical

simulation at Ra=7Rc,Pr=10, and an aspect ratio of 4. The flow

plan-form actually has considerable order. Fig. 8 shows a probe signal

located near the mid-point of the flow. The flow field has a large com-

ponentin kz=0, which is a two-dimensional turbulence generated by the
"beating" ineatosdiscussed in Sec. 2.

*The maximally unstable component of the flow is destabilized by its

interaction with the two-dimensional component, and hence the vigorous

* time dependence. Calculation of the Kurtosis of the various fields show

only a small departure from Gaussianity.

4f.L% L.1



Fig. 8

Fig. 7. Contours of the verti-
cal velocity field for slip-boundary 0 270
thermal convection at Ra=7Rc (Rc=657),
and Pr=10. Initial conditions were generated as a three-dimensional,
Gaussian realization. The value of t - 200 thermal diffusion times.

Fig. 8. Time series for the flow field shown in Fig. 7.

Calculations using DIA on this problem are currently being done by

Dannevik (Thesis, U. St. Louis, 1984). For air (Pr=.72), he reports i:- .

good agreement between DIA and numerical simulations for both the

Nusselt number as well as the heat and momentum flux budgets in the

statistically steady state (<5.0%). 1:

It may be that closures could be unexpectedly useful for this problem. '.

As noted above, the cell plan-for of Fig. 7 is destabilized by the

vertical-vorticity modes, which are essentially a two-dimensional turbu-

lence. The spectrum of the latter is strongly peaked at the largest

available scale suggesting that a much higher aspect ratio may be needed

to accurately simulate the statistics of horizontally homogeneous flow.

If an aspect ratio of lOxl is needed, the simulation is prohibitive. On

the other hand, closures have no problem with the very largest scales,
and their effects can probably be represented analytically by an exten-

* sion of the methods of Sec. 2.
The numerical task to solve the inhomogeneous DIA is prohibitive,

at large Ra. The use of sophisticated algorithms may well help to .. V

overcome these difficulties, however. For example, Dannevik (1984) has

introduced a double time scale analysis, and uses the Pade approximation

to render the time-difference dependence of the problem manageable.

Further simplifications of the numerical task is to use FFT's to

evaluate the wave-number convolutions (Domaradzki and Orszag (1984),

private communication).

6. Concluding Comments

Our results here suggest that two-point closures cannot be

completely trusted to faithfully represent the physics of turbulent

9, 79 , a7



flows for all interesting cases. Rather, the best that can be offered

is that such procedures are useful tools for certain flows, and that

they may give some insight as to how certain (moment) aspects of the

turbulence behave. We surmise that they have the best chance of

succeeding for cases in which the flow is not far from Gaussian, a

condition which can only be assessed a posteriori. From the examples

surveyed here, it would seem that conditions of near two-dimensionality

may be the most inhospitable for application; in this case--at

least--the source of their failure may lie in the stability of intense

vortex elements. We may thus also expect poor results for shear layers,

and other quasi-two-dimensional flows. On the other hand, thermal

convection and perhaps stratified flows may be a more hospitable

regime--at least if the preliminary results of numerical simulations are

a valid guide.

Are these methods useful in turbulence studies? The answer depends

in part upon how difficult the (numerical) task of solving the closure

equations is. As we have seen, a nontrivial amount of coding is needed

*, to solve such equations. [A brief sketch of the numerical algorithms

used here is given in Appendix B.] For homogeneous problems, once the

investment is made, solutions are much easier to obtain than with the

DNS. It is not so clear, however, for inhomogeneous problems--shear flow

and convection--that closure competes well with DNS. However, we must

bear in mind that new algorithms--e.g., the use of Pade tables (Danne-

vik, 1984) for time histories and FFT's for the convolution sums (Orszag

and Domaradzki, 1984, private communication)--may soon reverse this.

Granted that new algorithms make closures competitive (and this is

especially to be expected at sufficiently high Reynolds numbers), we

must always stress that such methods furnish only limited information

about turbulent flows. Their role is that of a computational tool, and

as such their usefulness is mainly confined to quantitative information:

relaxation rates, spectra, etc.

Among the problems surveyed here, we may consider the decay of

homogeneous turbulence (bearing a passive scalar), the return to iso-

tropy, and thermal convection at moderate Rayleigh numbers as cases in

which closures succeed. The problems in two dimensions (M.H.D. and

Navier-Stokes) represent more severe tests, and ones for which the re-

sults are mixed (see, e.g., Frisch et al., 1983). On the other hand,

the question of singularities in non-dissipative flows clearly cannot be

investigated along this avenue. Indeed, the question of the analytic

character of such systems is as yet unsettled, and its resolution is a

prerequisite for designing a closure to treat the statistics of the flow

: '; ..so
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Appendix A

Here we record the DIA equations, in their isotropic form. For the

Navier-Stokes equations,

au(x,t)/at =-Vp-U * Vu + VZu, V *u= 0 .(A.1)

We form an ensemble mean,

(u(x,t)u(x',t')> - L(x,x',t,tl) *(A.2)

The DI equations of motion for the Fourier transform of U(x,x,lt,tl)

(which we simply denote as U(k,t,t')) is:

aUlkItolt')/at f a B(k,p,q)dpdq~fo U(p,t,s)U(q,t,s)G(k,t',s)ds

JotU(k,tI,s)G(p,t,s)U(q,t,s)dsl (A.3)

Here, B(k,p,q) is given by:

B(k,p,q) =(l/2)sin
2 (p,q){p2-q2 )(k2-q2)+p2k2}pq/k .(A.4)

Equation (A.3) contains a Green's function, G(k,t,t'), whose equa-

tion of motion is needed to make a deterministic set with which to ad-

vance U(k,t,t') forward in time. For the sake of brevity, we shall not 4l

* record this equation, but instead shall simply indicate the physical

characteristics of G. As originally proposed by Kraichnan (1959), G

represented the response of u(k,t) if a small impulsive perturbation is

applied to the right-hand side of (A.1) at time t'. The resulting equa-

tion for G(k,t,t')--as derived by a modified perturbation theory--resem-

bled (A.3) (for U(k,t,t')), except that the first right-hand-side term

is missing, and that the time integral on the second term is over {t',t)

instead of {0,t) as in (A.3).

Most two-point closure calculations to date have used a much sim-

pler set in place of (A.3). We refer here to the "Markovian" theoriesA

which involve only the simultaneous times (t,t), and use a simple ap-

proximate memory time to replace the effects of G(k,t,t'). The generic
"Markovian" theory may be written simply as:

(aa+vkj~~) Iddik~~~~~)Upt-~~)I (A.5)I.

g(k,p,q) = i(k,p,q)o(k,p,q)

O(k,p,q) -11 -ep-jk+jp+jq)t/l~)Mp+~)

Here, the triple moment memory time o(k,p,q) is simply characterized in

terms of an amplitude dephasing rate ,p(k). An approximate

connection between (A.5) and the DIA is established by taking: N

G(k,t,t')=exp(-ij(k)(t-t')} U(k,t,t6 )=LJ(k,t',t')G(k,t,t').

81



In this approximate characterization, the DIA is nearly the same as

Edwards (1962) theory. The expression for p(k) in that case is

p(k) = fdpdqB(kp,q)U(q)/[a(k)+ (p)+a(q)I (A.6)

kf dpE (p)I/2 (A.7)

(A.7) is a rough approximation to (A.6) in which we have assumed U(q) to

vary more rapidly than p(q) in order approximately to evaluate the inte-

gral equation. The above approximations (A.3) and (A.5) do not behave

properly under random Galilean transformations largely because of the

lack of invariance of (A.6). This error means that the inertial range

computed on the basis of (A.6) (A.7) will not be correct. Several.-

methods have been proposed to build perturbation theories that more

properly incorporate Galilean invariance. The gist of most of these

proposals is to replace the p(k), Equation (A.7), by the large-scale

(r.m.s) strain rate:

p2 (k) = y{f. dpp2E (p)) (A.8)

The value of y (or its generalization) is generally fixed by the theory,
or--as in the Test Field Model (TFM) (Kraichnan, 1971)--by comparing the

approximate procedure for some simple problem to a more exact method.

The closure utilizing (A.8) is called the Eddy Damped Quasinormal

Markovian (EDQNM) approximation. The test field model has a more

elaborate determination of a generalized V, but effectively reduces to

(A.8) at large k. At small k it has a term kf dpE(p), in addition to
k

(A.8). See Herring et al. (1982) for details.

Generally, the larger the U (as in DIA), the smaller the transfer.

The sensivity of decay to variations in U is presented in Fig. 9, which

shows Ev(t) for Edwards theory (p given by (A.6)), the TFM, and the

Markovian Quasinormal approximation (Tatsumi et al., 1978). For the
L

"....

*T = Fig. 9. E (t) vs. t (units of
P(4,TFM) = 1.35 % initial large-eddy turn-over time)

P(4,EDW) =1.41 for three theories: TFM (solid line),

P(4,MQN) = 1.31 Edwards(dotted line), and the
% Markovian Quasinormal (dashed). R (t)

ranges from 600 at t=O to 50 at t=100.
The value of P for the Quasinormal
theory may not yet be converged at
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latter, V=0. Notice that the decay exponent p(4) (see eq. (2.2)) is

quite similar (1.35, 1.41, 1.31) for TFM, Edwards, and MQN). However,

the values of Ev(t) differ markedly. This variability may be under-

stood by the analysis of Sec. 2.

Appendix B

In this section, we sketch some numerical techniques we deem appro-

priate for the closure equations (essentially (A.3) or (A.5)). The two

problems to be addressed are: (1) the wave-number dependence (including

the evaluations of convolutions (fAdpdq)), and (2) time stepping.

After considerable experimentation, we have found that the wave number

representation is economically written in terms of collocation utilizing

(cubic) splines. To explain this, we abbreviate (A.5) as:

3U/at = F(U) . (B.l)

Now approximate U(k,t) in terms of a discrete set [Ui (i=l,...,N):

N
U(k) = [ Uisi(k) . (B.2) %

Here {si(k)) is an as yet unspecified set of linearly independent func-

tions. We now determine {Ui} by the integral relation

"> ]fxi (kldk(aUlk)/at-FIU) }, (i=l,2,...,N) .(B.31) -

In (B.3), xi(k) (i=l,...N) is a set of arbitrary test functions.1n
Note that (B.3) may be converted to a set of N equations for dUi/dt.

Our choice for the si(k) are B-splines (see DeBoor, 1977). Brief-

ly, these are (C-2) unit-height pulses centered at ki (i=l, N-2) vanish-

ing (cubically) outside the interval (ki_2 < k < k i+2), for 4 < i < N-3.

They are related to the standard (cardinal) splines, si(k)[s i.(k) = 6i ]

by a linear transformation. For i < 4 si(k) vanish at k and are
1 i +

unity at * The si(k), i > N-3 mirror this behavior at kN We

choose the set of computational points:

[klk 2 ...kN] (B.4)

at which the spectrum is specified as identical to { except for k

and kN I . Their distribution on the computational domain [k,kTl will

be discussed presently. The B-splines have the advantage over the card- [

inal splines, i.(k), of greatly economizing the (dpdq)-wave number con-

volution integrals in (A.5). In addition, the splines seem optimally

suited to representing accurately spectral shapes which may vary by -

several orders of magnitude over the computational domain. Furthermore,
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they yield considerably more accurate evaluation of the (p-q) integrals

than, for example, linear interpolation. * .

If xW(k) = s.(k), (B.3) is a Galerkin procedure, while if xi(k) =

6(k-k.) (i=l,...N), it is collocation. For the former, exact energy

conservation is incorporated, whereas for the latter, it must be added

as an additional constraint. However, preserving exact conservation
laws is not necessarily a part of the best numerical procedure, and for

the present problem, we have found that collocation is actually superi-

or. Conservation properties may then be used as tests of numerical F
accuracy.

In approximating the right-hand side of (A.5) with (B.2) and (B.3),

we first rewrite it in terms of an appropriate (ds) integral of

U(k,t,s), where

U(k,t,s) = exp(-p(k)(t-s))U(k,t)

and apply spline interpolation to U(k,t,s). This makes the approxima-

tion procedure parallel to that for the DIA, and more importantly

obviates an awkward functional dependence of o(k,p,q) on s(k) which

otherwise would occur. This amounts to applying the rule,

F(p,q) F(Pi,qj)si(P)sj(q)

where needed. Here we recall that si(k) are the cardinal splines.

The final approximation equations to be solved are but a discre- '

tized version of (A.5), with different coefficients B:

(3/at + 2vk2 )U(n,t) =

SB(n,.i,&)O(n,m,£)U(i,t)(U(m,t)-U(nt)} (B.5)

m,t

where,
U(n) = U(kn )n

N N
B(n,m,A) -m' L ' , B n p 'q )dpd qsm ,(p )s l,(q )

and, -l
Anm = [Sn(km)] •

The (p-q) integrals are here effected by the appropriate (Legendre or
Tschebycheff) method, depending on the analytic character of B(k,p,q).

There remains to discuss the distribution of computational points

(B.4). Other computations (beginning with those of Kraichnan, 1964) %

utilize an exponential distribution k = exp(an). This distribution has
the advantage of rendering linear interpolation exact for power law

spectra. In addition, it concentrates points near the spectral peak,

where energy transfer changes rapidly, and has relatively few points in

the large k dissipation range, where transfer is small and smooth. The
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approach used here is dictated by the following considerations: (1) the

(ki}-distribution should be such as to optimize the satisfaction of the

existing conservation constraints; (2) cusps in U(k,t) near kB or kT may

develop in certain studies, and hence {ki} should have high density at

end points to preserve accuracy; (3) if a wave number diffusion approxi-

mation to the closure like (1.5) is an approximate guide, a (piece-wise)

Gaussian collocation (ki) may be optimal (Printer 1975).

Guided by these considerations, we settled on the following

stretched Gaussian points as fairly optimal:

k. B(ex(yl)k (B.6) V

Here yoare Gaussian points mapped onto (0,N-l). The two numbers ABa

are chosen so that: (1) (B.6) yields k(N)=kT, and (2) energy conserva-

tion by non-linear interactions is optimized for an anticipated test

U(k). The calculations reported here all use N=32. This appears also

adequate even for quite large Reynolds numbers.

The time integral of (B.5) may be most economically effected by a

quasi-linearization of the right-hand side (Herring and Kraichnan,

1979). To this end, we rewrite it as

N
aun/3t =IAnm (t)Um  where, (B.7)

Anm -2vk 26 +(I/ 2 ) [I{(g (n 'm '£ )+Eln '£ 'm l llU li )
run n nm l2LU~~,t+3nLm)Ut

- [ [B(nrm)U(n)+6 nmB(nr,)U(t)]} ( (B.8)

r
B(n,m,L) = B(n,m,L)e(n,m,z,t)" :

The basic strategy in solving (B.7) on an interval (tl,t 2 ) is to solve

first for U(t1) using A(tl), and then iterate (B.8) using the predicted

value for U(t2). In practice, it suffices to simply use the average

(1/2)(A(t1 )+A(t2 )) on the corrector phase. This procedure is able to

take steps -100 times the time step in an Adams-Bashforth or Euler

time step scheme (for the same accuracy). Hence, the time spent in

eigen mode computations is more than compensated in increasing the

allowed time step. [We note that a typical time for eigen-made analysis

of (B.7) is about twice the time needed to evaluate the right-hand side

of (B.5) for N=32.] The physical reason for this economizing can be

appreciated if we recall that the spectrum moves coherently to larger

scale, without much distortion. The main feature is then characterized

by the value of the spectral peak, kot). The maximum quasi-linear time

time step is a significant fraction of ko(dt/dk o ), whereas the more

standard methods may take only a fraction of the small-scale eddy turn-

over time before diverging.
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Intermittent Turbulent Flow

W. Kollmann

Department of Mechanical Engineering, University of California, Davis, CA 95616, USA

1. Introduction 'N.

Corrsin [1], [2] established several decades ago the existence of a sharp

interface between turbulent and nonturbulent fluid for a variety of shear flows. .

Since then a large number of papers appeared reporting experimental results on .

conditioned variables. For the flat plate boundary layer measurements of the
intermittency factor and conditional mean velocity components [2]-[11], including

flows with non-zero pressure gradients [3] and normal stress components, point
statistical expectations [4]-[11] are now available. The turbulent zone shear
stress was reported in (6], and fundamental questions concerning discrimination
and the dependence of conditional moments on threshold levels received attention

[7], [8]. measurements in plane jets including the initial region with potential

core and point statistical moments were reported by several authors [12]-[16].
For round jets measured intermittency factor and some conditional moments are

available [2], [17]-[21]. The comparison of free and ducted round jets [17] shows

that the radial intermittency factor profiles deviates significantly from the
common Gaussian shape due to the presence of ducts. For mixing layers and wakes

less data for conditional quantities are available (22]-[24]. Complex flows such

as interacting mixing layers [25]-[28] wall jets (29], transitional flows [30] and

reacting flows [31]-[33] are receiving increasing attention. The existence of
large scale structures lead to new views on entrainment [34]-[35] and averaging

(38], [39]. The theoretical treatment of intermittently turbulent flows was A 16%

initiated by Corrsin [2], [40] and continued by Corrsin and Phillips [41], [42),
and Gibson [43], [44] and Lumley [45], [46]. The statistics of multi-valued
random variables was introduced [45] to deal with the interface separating

turbulent from non-turbulent fluid. Closure models were first suggested by Libby
*AN

[47], [48] and further developed [49], [50] to allow calculation of intermittency

factor and conditional moments [51]. The advantage of conditional moments over

unconditional quantities is exemplified in the measured pdf of two velocity

components in a v-shaped premixed flame in fig. 8 of ref. [32]. The pdf has two

distinct maxima and very small probability for velocity values between the
maxima. I n this case corresponds the unconditional mean to values which have, ;

thus, small probability of actually occurring in the flow, whereas conditioning

produces the mean values near each of the maxima of the pdf. Thus it can be .5.
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argued that conditioning leads to less complicated statistics and explicit

transfer processes between different zones.

The present paper investigates conditioning and the corresponding

i ntermittency factors. Representations for the sources of intermittency are

established. Reacting flows are considered as an application and the closure

problem for the intermittency source is related to an existing closure for the

pdf-equation. Finally, some results obtained with a conditional second order

closure model for incompressible flows are presented.

2. Conditional Events and Their Description

The experimental evidence indicates that turbulent shear flows hzve random and

non-random properties. Thus, an important question arises for the theoretical

description of turbulent flows: how to incorporate chaotic/random and non-random

features. First, it should be noted that the distinction between random and
non-random propertits is by no means an easy matter, because non-random solutions

to equations describing mechanical systems can have the complicated appearance of
randomness without being random. A second point to consider is the fact that the

experimental observation of a non-random structure in a turbulent shear flow is

usually incomplete and the non-random features can only be extracted by pattern

recognition techniques involving some short time or spatial near-field averaging

processes [34] (52). The probabilistic analysis of turbulent shear flows can he

based on the following considerations. The variables describing the flow [ A
(velocity, pressure, etc.) are decomposed into contributions pertaining to

different properties of the flow. Statistical operations are then applied

observing certain conditions. Both decomposition and conditioning can be achieved

.1 in many ways and their choice will determine the usefulness of the resulting A
equations. *,

2.1 Decomposition

The decomposition of the flow variables will be classified in terms of the

decomposition of the physical flow domain Z (with boundary sk) it induces.
Denoting the flow variable by ?J(x,t) (which can be a scalar or vector quantity),

the decomposition

,P(x,t) u ~0 _t) + O.,t) + _t) 4 . .2)

is either disjoint, such that for a point x £ only one member /i(i) is

non-zero, or it is overlapping where for any x c at least two members of the

decomposition T(tt) ~ are non-zero. The tagging of material points in a

subdomain of the flow field h at some reference time with a non-diffusive property
is an example for a disjoint decomposition: at an Eulerian point x either a tagged

or a non-tagged material is present but never both. An important example for an

89 . .



overlapping decomposition is obtained by means of Fourier transformation. A

disjoint decomposition of the image variables in Fourier space produces members in

physical space (wave packets) which are non-zero nearly everywhere in a9 [53].

Vice versa is a disjoint decomposition overlapping in Fourier space. A particular

overlapping decomposition was suggested by Hussain and Reynolds [38] which uses

conditioned and unconditioned variables in the decomposition.

2.2 Conditioning

The decomposition of the flow variables is achieved by prescribing conditions

for which a member l7yi) can assume non-zero values. The conditions defining

the members in a decomposition of the flow variables can be classified (referring

to physical space) as local, where infomation at a single point x in a and a

single instant in time is required for the evaluation of the conditions, and

non-local, where at least two points in time or space are required. In the

following it will be assumed that the conditions can always be expressed in terms

of a finite set of discriminating variables defined in 69 or a transformed space

(i.e., Fourier-space). Then it is always possible to form a finite set of

indicator functions

f 1 condition (i) is satisfied at (x,t)Xi~~~x_,~t)--(), .
0 otherwise (

defined in physical space, or

1 condition (i) is satisfied at (k,t) (2)
X i(_Qit)0 - (2) ,"

0 otherwise

defined in the transformed space. The members of the decomposition are then

tdefined as- t

and analogously in the transformed space. In order to show the flexibility of

this approach two examples will be considered. First, consider a single

non-negative scalar 6(x,t) as discriminator in physical space such that the

condition is expressed as inequality

6(x,t) > d > 0 (4)

where d is a chosen threshold value. The indicator function Xmarks all points of

the flow field where this inequality is satisfied. For local discrimination the

inequality is evaluated at the same point in space and time as the flow variable

If the discriminator 0 and the threshold d are such that the condition amounts
to distinguishing turbulent from non-turbulent flow, the standard intermittency

factor is obtained as expectation of the indicator function. As an example of
90
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non-local conditioning, consider then

6(x,T-) > d for T< t and 6(x,t)_ d (5)

which amounts to requiring that the scalar is above the threshold at the present

time and at some earlier time irrespective of the events in between. A more

restrictive condition would be

6(xl)>d for t- T < t<t (6)

involving a finite time interval T. Comparison of the time history of the

discriminating scalar with a chosen function S(T') ..

Sr)- d < 6 (j _ i *r d f or t - T < It< t (7)

allows conditioning with chosen patterns S(T) within an interval 2d, which itself

could be time dependent. In each case the indicator functionXcan be formed and

its expectation

y(x,tIT,S,d) i <X(x, tIT,S,d)> (8)

(notation for comparison with S(t) in time interval T) is called intenmittency

factor. It measures at a given point x of the flow field the statistical

frequency of the event that the condition is satisfied. Conditioning non-local in

space an be done in analogous fashion. If the flow variable lFtis taken at x and F

6(xi,t) > d , - 1, . n, n > 1

is required, various subsets of the flow domain atare obtained depending how x .

and/or the xi are varied and whether x is identical with one of the xi or

not. If x is kept fixed and x 4 Ai for a i - 1, . . . n and varied arbitrarily

X(x t) - 1 for 6 > d somewhere in ."

and no condition is imposed on the sampling of VIx,t) if d is small enough.

If x. xij then

1 for 6(x,t)> d

0 otherwise

because all xi  .x is a possible configuration and local conditioning results.

If the configuration of the x1 (relative distances and enclosed angles) is kept

fixed and the configuration Is allowed to translate and rotate genuine non-local
conditioning is obtained. As for non-local conditioning in time conditions,.

analogous to (7) on subsets of A with non-zero volume can be constructed in order

to single out chosen spatial structures in terms of the scalar variable d.

As second example conditioning in Fourier-space is considered. Let~f(x,t) and ..

4(x,t) be realizations of the flow field at a given instant t, then

A I'" i ':i(1,t0 - 1' dI dx y(j, t) e
(2w)3 j

f,



and

_ 1, 2  f fdx 6(x it) k x

Now let the condition be

>d

at the same wave-number as?for local conditioning. The conditioned variable

is V,*(k)t) t) k,t) (9)

and gives transformed back into physical space

4X(.! t)_i~
- dkX(ktl Uik,t) eikx (10)

(20)

The transformation acts only on those wave-numbers k for which J6(k,t)j> d.

If 6 is proportional to a positive power of Iki the high (or low) wave-number

range of 7 can be singled out. Furthermore a combination of conditions in

physical and Fourier spaces is possible, where the condition in Fourier-space acts

as a filter and the condition in physical space acts on the filtered realization.

Both examples show that for non-local conditioning the geometric relations of -

the conditioning and sampling point together with the conditions must be given.

Furthermore, it is possible to deal with non-random structures if some of their Lj .

properties are known a priori. Non-local conditioning in space or time can be set

up with appropriate discriminating variables to recognize them and, therefore, ,

sample in phase with their appearance and state. The problem of existence and

generation of non-random structures is presently excluded, however.

3. Conditional Moments

Expectations of conditional variables and pdfls form the basis of the present

investigation. The methods of conditioning discussed in the previous chapter will

be applied to obtain the intermittency factor and conditioned moments and their

exact transport equations.

3.1 Intermittency factor: local conditions

First local conditioning in physical space is considered. This case was first

analyzed by Corrsin (1) and Corrsln and Kistler (2] for turbulent-nonturbulent

discrimination in several shear flows. An equation for the Intermittency factor B'

appeared subsequently in Libby's papers [47], [48] and received exact

interpretation by Dopazo and O'Brien (49], (50]. The analysis is based on a

non-negative scalar 6(x,t) which is transported by convection and diffusion and

may be created or destroyed by various sources or sinks. Thus, ,.'9.
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I T(r. T) * (6 (1
at a ax a

holds instantaneously in the flow field*. The local condition is expressed as

1 for 6(x,t) > d
1 0 otherwise

or
' 1 for 6(x,t) > d or 6(x,t) S 1-d

X(,t) 0 otherwise

for a scalar bounded from above and below and normalized. The threshold level d >

0 can be considered a function of the Reynolds-number in particular if 6 > d

corresponds to turbulent flow at xt and 6 - d to non-turbulent flow. For

sufficiently smooth boundary conditions and source R, the solution of (11) is

twice differentiable and then defines for any instant t

S(x,t) 6(t) ) - d = 0 (12)

a subset of the flow domain, which has a bounding surface determined by the limit

points of sequences yi with S(yi,t) < 0. This surface is called an interface

between the zones with 4 > d and 6 < d. A point on this interface moves with

velocity V in the direction normal to the interface relative to the fluid. Thus

nV v - V nfor IVS1 >o (13)

where vs denotes the interface velocity. If the scalar variable 6(x,t) is

sufficiently smooth in x the normal vector n. will exist nearly everywhere. For

the indicator function follows then ((54] Ch. 11)

-a- + va  DS - -(S) (14)
at C ax OS

where 6(S) emerges as a derivative of X with respect to its argument S (DIDt

denotes the substantial derivative). Ensemble averaging results in the exact

transport equation for the intermittency factor

21 + -i- <v > (15)(
at ax a5

where Q denotes the intermittency source defined by

Q w <OS/Ot a(S)> (16) 'P

The source term of the intermittency equation can be expressed in terms of the
relative progression velccity V of the interface S 0 0. Thus, the first

representation of Q is obtained

< VIS a(s)> (17)
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which follows from the fact that the left hand side of (14) is zero for points

moving with vS. A second representation for the intermittency source Q can

be given by applying (11) to (16)

< A) + (18)
f i* a

linking Q to the dynamics of the discriminating scalar variable o These

representations allow one to draw several conclusions. Considering (17) we note

that this representation is equivalent to Dopazo's form of the intermittency

source [49]

Q(x.,t) - lim 1f dAV> (19)

as shown in the appendix. U denotes here a particular sequence of neighborhoods

of the point x and US is the intersection of U with the surface S =0 (see

appendix for details).

Dopazo's representation (19) can be interpreted [69) as a correlation of the

relative progression velocity V with a local measure for the amount of interface

area per unit volume. The relative progression velocity is determined by

V 6 (S) .+ R(6) (S)(

as shown by Corrsin [55] and Gibson [43]. V can grow over all bounds if points in 1 '.
the flow field appear where V6 - 0 and either R(O) j 0 or molecular diffusion has

non-zero effect (extremal points and lines). If a fluid is considered which is

initially at rest and a scalar 6 such that the sources are zero initially, then 6

is distributed in 0 with extremal values at the boundary. Two agents are then

able to produce extremal points (maxima or minima) or extremal lines (saddle

lines) in 9 as time evolves: convection as shown by Gibson [43] and sources. If

the scalar 6 is non-negative and the threshold level d in (12) is sufficiently

small the gradient 1V6 will be small and the second derivatives will be positive

with high probability thus making

1,1 (r'-) 0 for x: 6(x,t) = d > 0

Molecular diffusion will therefore most likely produce a positive progression of

the interface in the direction of the negative normal i.e., into the zone with

S < 0. Little can be said about the source term unless a particular scalar 6 is

chosen except
lim R(6) > 0 (21)
60

because 6 must remain non-negative. The influence of R(6) for small threshold
levels is however worth investigating because it represents the growth of the zone
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S > 0 not linked to transport of mass. For this purpose the scalar

6(xt) u W. (22)

is considered as discrimination between turbulent (S > 0) and nonturbulent zones.

The source term follows from the vorticity transport equation as

3<w >
R - v - -, + 2W, -L (cv'w - cVw';) +

'w a. a3 ax Ba aB

awl awl
<W > IS' wc <S'O> -2 a a (23)

a B a0 a* a"

0* J

where S0  1 ( a + ax ) denotes the rate of strain. In this case, therefore,

lim R(d) = 0 because all contributions to R are proportional to the fluctuating
6*0
vorticity. Consider now the free boundary of a turbulent shear flow where the

spatial variation of the mean quantities is small and outside the zone S < 0 the

motion is nearly inviscid. Then for points (x,t) with S < 0 the i-source is

dominated by the vortex-stretching term

If vorticity fluctuations are present in this zone at a level below the threshold

d, they will be amplified by the strain rate stretching them most efficiently if

they are aligned with the dominant direction of stretching. Conversely, if the

low level vorticity is homogeneously distributed little effect on the scalar 6

results, because the strain tensor has zero trace. Thus, only in the case that

low level vorticity in the zone S < 0 is nearly aligned with the stretching

direction created by the large scale motion in the turbulent zone, will the

interface defined by (22) move faster than the interface defined by a conserved

scalar with the same diffusivity.

3.2 Intermittency factor: non-local conditions

Conditioning at more than one point in space and/or time leads to moments or

pdf's that contain a certain amount of scale information. The range of

possibilities for non-local conditioning is vast and for this reason the simplest
case of two points is discussed first. A single scalar 6(xt) is considered as

discriminating variable and the conditions are given at two points x,y at the same

time t

I 1 If O(x,t) 2 d and O(y,t) > d*
2(x,t/y,t) . -- -- (24)

0 otherwise
4

where d, d* are positive threshold levels. Since the condition at (x,t) and (yt)

is the logical product of the conditions at each point, the two-point indicator
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function Y2 (x,tlY,t) can be considered as a product of single-point indicator

functions
X 2 lx,tIL~t) -X( t) X*z, t) (25)

where the asterisk denotes the level d*. Now the two surfaces, S - 0 and S* - 0

(in the three-dimensional flow domainS), are defined by

S u6(x,t) - d and S* a 0(,,t) - d*

determine the value of X2. They can be viewed as a single surface in the

six-dimensional space of point (x,) in OxsO c R3 x R3. The equation for the

rate of change of the indicator function follows for (24) using (25) as in the

case of local conditioning

X2 (1 0 'x2  aY X2  ( D
jT - v (x.t)j-~ + v lt) j- X*lzt) I(S) A(xbt) X(x.t) 6(S*) Y-(,t)

(26)

Ensemble averaging leads to the exact transport equation for the two-point

intermittency factor
... I2(,tly..t ) a <X2(x!.ti_, t)> (27)

given by :t(

(28

where 2 denotes the intermittency source defined by

fl~ - x~t)>(29)
S2" <X'(Y.,t) 6(S) (x!t)> + <Xx,t) 6(S*) (yt)>

Representations (17) to (19) carry over to (29) without modification. If q(xt)

denotes the Instantaneous value of Q in (16), the structure of Q becomes

evident as
2"<X*(,t) 0 41,t0 > + <Xlx. 0) O(lz, 0> ,'!:

where we have the contributions of the single-point intermittency source at each ,.-, . -

point x, X provided that the condition is met at the other point. A two-point
intermittency factor is able to capture topological properties of the interface

between two zones that the corresponding single-point variable does not see. In

order to show this a fixed configuration of points xy is considered where x
varies in the flow field and y = + r with fixed r 0. The equation for the

intermittency factor y2(x,r,t) can be recast then in the form

v0(x't)X2> = Q- <v (x+r,t) - v.(x,t) .- > (30) '::

analogous to the single-point equation (15).
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Fig. 1 Interface without folding in y-
direction

AA

F h:
Yx

I y

0.04

4Y

Fig. 2 Interface with folding in Fig. 3 Intermittency factor yl
y-direction and y2 and function F defined

in (31) for fig. 1

Now consider the free boundary of a turbulent flow with dominant direction of

the mean flow along the x-axis as sketched in fig. 1 and fig. 2. Two cases are
considered: in fig. 1 the fluctuations of the interface does not produce folds
with respect to the y-axis (crossflow direction), whereas in fig. 2 the same
fluctuations of the interface are assumed with folds added to the interface with

positive probability. The shift r in the two-point intermittency factor is taken

as r a (O,ay,O) with ay > 0 and of the order of the spatial macro-scale of the
discriminating scalar . Let the single-point intermittency factor y(x,y) be
known, indicated as the full line in fig. 3 and fig. 4. Then we note that

Y2(!,Lt)in case A (fig. 1) turns out to be

Y2 (xy) = y1 (x,y+ay) .

for x held constant, shown as the broken line in fig. 3. This follows immediately
from the assumption that in this case no folds with respect to the y-axis appear,

because then the event that the condition is satisfied at y + ay always implies
that the condition is satisfied at y. Thus 2 (x,y/x,y~Ay) X(x,y)X(x,y&y) =

X(x,y+ay) and ensemble averaging yields the relation above and no new information
is contained in Y2 compared to y. in the case of no folds of the interface.

" I "":;7



Fig. 4 Intermittency factor yl and
y2 and function F defined in (31)
for fig. 2

X r
A\

.4' Now considering the case with folds added to the interface as sketched in fig. 2
9.' we note that always

must hold, because the condition in is more restrictive than the condition inY2

probability (which is unity without folds), that the condition is satisfied at

n(xy) too. Hence

Y2(x .y )  < 1 (X.+y)

for a shift ay of the order of the fold size. If we now define a foldedness

measure F(x,r,t)
.' F(x,r,t) a y(x,r,t) - tx+r t) (31)

h" _ ~Y2(xl.+r t) (31

we note that this function has several interesting properties:

1) F(x,r,t) - 0 if no folds appear in the direction of the shift r.

2) F(x,r,t) > 0 if folding appears with respect to r.
3) F is composed of statistical moments for which exact transport equations

can be derived.

Furthermore we note that F depends, as two-point correlation, on six

independent spatial coordinates. If, however, a reasonable estimate for the fold

size is known (..e., macro-scale) then r can be set to a constant as in the

example above and the transport equation for F can be included in single-point

closure schemes to provide, for instance, improved treatment of the entrainment

mechanism at free boundaries of turbulent shear flows. In this case the form (30)
of the transport equation for Y2 is appropriate and closure assumptions for the
right hand side must be developed. A growinq body of experimental information

[34) exists on development and properties of large scale structures, which can be
expected to reveal conditions for folding of iso-scalar surfaces and the transport

,,



Thus follows the transport equation for yn by intergration from (32) without

recourse to the notion of an interface. From this brief outline can be concluded

that non-local intermittency factors can' be constructed to suit particular needs

in terms of the function fk and the exact transport equation for Yn can be

established.

3.3 Conditional moments

The indicator function discussed above allows definition of conditional

moments: let A(x.,t) be a fluctuating variable (such as velocity, pressure), for
0 < <X> < 1 L

A <XA> A* A A (34)

the expectation in the zone with S > 0

_<(I -X) A > 0O  X(5
- - (35),

conversely the expectation in the zone S < 0 and A*, A0 are the corresponding

fluctuations. Considering local conditioning according to (11) and (12), the

' Navier-Stokes system can be averaged conditionally and yield for constant density

the equations

CA a

as a consequence of mass conservation and

av Zav a a~* av
+ V - (Y **) ap+ (- -) +S (37) "°

at 0 ax y axB  a B ax ax ax (

and

av av I))-

at 0 Yax s ax ax ix(8

follow from the momentum balance. The terms S. and S reflect the transport of

momentum through the interface and can be viewed as force per unit mass exerted by

the zone - on the zone X = 0 and vice versa [49]. These sources can be

represented in terms of point-statistical moments [49] as follows. Introducing [58]

a, +P v a

F (v V n v n 17 ) TSIa(S) > - axL <v v nBlVSl 6(S)> (39)

w e g e tP' .

SF* and = - F (40)
het and presure In (3). The momentum

sources S and have no counterpart in unconditionally averaged balance

S . .* . . . . . . . . . . . . . - .-. . . ..-- g &



Thus follows the transport equation for yn by intergration from (32) without

recourse to the notion of an interface. From this brief outline can be concluded

that non-local intermittency factors can be constructed to suit particular needs

in terms of the function fk and the exact transport equation for Yn can be -

established.

3.3 Conditional moments

The indicator function discussed above allows definition of conditional

moments: let A(x,t) be a fluctuating variable (such as velocity, pressure), for .

0 < <X> < 1

<XA A* sA A (34)

the expectation in the zone with S > 0

<(1 -X) A >

conversely the expectation in the zone S < 0 and A*, A0 are the corresponding
fluctuations. Considering local conditioning according to (11) and (12), the

Navier-Stokes system can be averaged conditionally and yield for constant density

the equations

atx (y v <v n IVSI8(S)> (36)

as a consequence of mass conservation and

+ . C, ) -- + (37)

aat X y aX aB pax ax ax

and

av av . ,av+ - v~v) -_i + a_
a~ ..... ! .L(1.yvv).±L a + (38)

at B axBI-YaxB B pax ax a

follow from the momentum balance. The terms S and S reflect the transport of
momentum through the interface and can be viewed as force per unit mass exerted by
the zone X = 1 on the zone X- 0 and vice versa [49). These sources can be

represented in terms of point-statistical moments [49) as follows. Introducing [58)

F a (v V + P2 n - v n)1) S(S)> - <v vnBIVSlG(S)> (39) %

ax BaxB a

we get an

= F* and (c, F°  (40)

where the superscript at F applies to velocity and presure in (39). The momentum

sources S. and 1. have no counterpart in unconditionally averaged balance
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equation. They contain new unknown correlations and for this reason it is important

to investigate their properties. It will be shown that 9.and 9.are not

independent, but connected with the intermittency source Q via a local relation.

This follows from the fact that the unconditional mean velocity is given by

<Vo> v Y + (1- (41)

and the unconditional stress tensor by

<VO> Y '*+1. Y) v 0 v0 +(- v -Y) v (42)

locally. Applying these relations to (37), (38), and combining to obtain the

, equation for the unconditional mean yields the result

as claimed. This relation has important implications for the closure of

conditional moment equations, because it essentially removes one of the momentum

sources from the set of unknowns. This type of local consistency requirements

carry over to higher order moments such as Reynolds stress, but becomeincreasingly complex.

Non-local conditioning offers too many possibilities for an exhaustive

discussion. We note, however, that for the case of two points in space the

decomposition v(4
2 -- ) v (4 4 ) -X 1 ,

* with X, - XI(x,t) and X 2 (x-_r,tlx,t) as defined in (24) leads to three

contributions representing the velocity in the core of the zone S > 0, the

velocity in the zone S > 0 near folds and the velocity outside this zone. The

shift r is considered constant. Averaging and appropriate definition of zonal

means shows that the second part in (44) is proportional to the foldedness

measured introduced in (31).

4. Turbulent Flows with Chemical Reactions

Turbulent flows with chemical reactions can be separated in zones with

distinct properties by the extent of reaction that takes place. If significant

amounts of heat are released by the reactions, the density will be variable. In

this chapter two cases of turbulent flows with chemical reactions in the gas phase

will be discussed: non-premixed and premixed combustion. The chemistry of

combustion in the gas phase involves complex systems of reaction steps with

numerous components. In order to keep the problem tractable, only a greatly

simplified and global description of chemistry will be employed. In both cases
V? particular values of scalar variables arise, which lend themselves to conditioning

and the corresoponding sources for the intermittency factor will be analyzed. [
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4.1 Non-premixed combustion: diffusion flames

The simplest model for the chemical reactions in diffusion flames consists of

a single infinitely fast and global step, in which fuel reacts with oxidizer to

product. The instantaneous description of the local thermo-chemical state can

then be reduced [59], [60] to a single conserved but non-passive scalar variable

(x,t) with values in the interval [0,1). The thermodynamic variables density,

temperature and composition are local functions [60] of this scalar E(x,t) which

is usually called mixture fraction [61]. For the combustion of hydrogen and

hydrocarbons these local relations are strongly non-linear and information on the

pdf is requird in order to calculate the expectations of thermodynamic variables. C':
The composition of fuel and oxidizer streams determine the stoichiometric value

Istof 6, at which the infitely thin flame sheet is located. The conserved and

non-negative scalar mixture fraction is now taken as discriminator and the ,-...

stoichiometric value xst is considered threshold value. Hence the fluid :.:.

consisting of fresh oxidizer and product (plus inert components) is the zone where

Sa6 - Xst < 0 and the fluid consisting of fuel and product (plus eventual

inert components) is the zone S > 0. The surface separating the two zones is

identical with the infinitely thin flame sheet. Furthermore, both zones are

turbulent but show different levels of density fluctuations: the zone S < 0

exhibits strong fluctuations whereas the zone S > 0 shows weak fluctuations (for
fuels like H2 they are negligible). Following the suggestion of Janicka [62] ..

the indicator function is weighted with the density and the intermittency factor
follows then as

Y~ a wX> 0 Xxt 1 for 6(x,t) > (45)
0 otherwise

where w - p/<p> denotes the weight function. The conditional moments analogous to

(34) and (35) are now .4
A <w A* A- A (46)

<(I)A>0

and w A° nA (47)

Then the dynamics of the weighted Intermittency factor are determined by

with the source
DS (9Q - <p lt a(S)> (9)

This source is closely connected with the pdf of the scalar 6. This connection

,.V can be analyzed by considering a second indicator functionX 1 .

0 otherwise (50)
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with ax > 0. Then follows that the difference of the corresponding intermittency

factor is
+ AX
t - Y I di P(x) 5 AX P( st)+

"<p> V)* ~x
st

where P(x,x,t) is the pdf of 6(xt) and P a wP. From (48) follows

T~ ka> (Y-y) + --L-(<>cw v. (X-X 1 )> = AX [-a (<> P) + a- <P> + 0(A

and
Tt(P ) + a (<P L) (6(xt - (kst + AM) + O(AX)"

a

where v is given by (46). Going td the limit ax * 0 and using the scalar pdf-
equation for high Re numbers

.L (<p> P) + a (<p> VP) (<p> RP) - <prv6. 76P>

.! the relation of the intermittency source Q to the pdf is obtained (for x - xst)
a ax -(

where P -a 6(6 - Ast [56]. Integration yields finally

<o> RP + -L <oPPV. VOP> (52)
ax

For diffusion flames the scalar 6 is conserved and thus 4

<P e 6 a (S)> (53)

where coo rv, .V6 denotes the instantaneous scalar dissipation. This

representation of the intermittency source shows several properties. The

derivation indicates clearly that conditioning (50) introduces a new independent

variable x and separation of the flow field in several zones is closely related to

the pdf F(x) of the scalar via (51). For diffusion flames with infinitely fast
single step chemistry the intermittency source (53) can be viewed as divergence of

a flux due to scalar dissipation along the scalar axis taken at the value of the

threshold. For small threshold values (53) is positive. It must change sign at 4

least once with respect to x and therefore Q is negative in the range of large

threshold levels, because (53) integrates to zero over all vaules of 6. Finally,

it is worth noting, that closure models for (53) are already available in the

context of pdf-transport closures [63], [64] hence no new effort is required.

.



4.2 Premixed combustion

The thermodynamic state in premixed combustion can be described locally in

terms of a single progress variable (Bray-Libby-Moss model £65), [66]) for

simplified finite rate chemistry. This scalar variable 6(x,t) is, however, not '.

conserved and its transport equation contains a nonlinear source/sink tem. A

small threshold value for 6 is introduced in the BML model and used twice to

define three zones: unburnt mixtures for 6 < d, reaction zone for d < 6 < 1-d,
burnt mixture for 6 > 1-d. In the BML model a powerful assumption is introduced,

namely that the probability of finding the reaction zone at a given location is

very small compared to burnt and unburnt zones. A different point of view can be

taken by taking the value 6. of the progress variable that corresponds to the

ignition temperature as threshold level. Then follows for the intermittency

source from (52)

=p> RP + -L <P c6 (S)> (54)
axS

From this relation it becomes apparent, that the progress of the zone, where

6 > 6ig (main reaction zone and burnt mixture), depends on the reaction kinetics

as well as the turbulence dynamics. Since the threshold level is not necessarily

small enough, such that the turbulence contribution is positive, conditions can be

inferred from (54) for Q < 0. If the turbulence level in the fresh unburnt fluid

is high enough, then <p CO a(S)> can decrease with x and result in negative 7

production of the intermittency factor. This implies that the zone containing a>

reacting and burnt mixture ceases to grow at the expense of the fresh mixture.

5. Applications

The approach discussed in the previous chapters can be illustrated in many

ways. Three cases were selected from the areas of numerial simulation,

experiment, closure model. First, the numerical simulation done by W. T. Ashurst

of Sandia, Livermore of a plane v-shaped flames in a premixed fluid is

considered. The dynamics of turbulence is represented by a large number of vortex
lines in the two zones of burnt and unburnt mixture, each having different

density. The reaction zone appears as a thin sheet as shown by the full line in

fig. 5 for a particular instance in time. The indicator functions '

t 1 burnt fluid at (x,t)

( 0 otherwise
and

% 1 burnt fluid at (x,t) and (xer,t){ otherwi se
are defined as suggested in Chapter 4, where x and x+r are on the slanted straight
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Fig. 5 Numerical simulation of a v-shaped premeixed flame (courtesy
of W. T. Ashurst, Sandia Livermore). Full line: Interface burnt and
unburnt mixture. VA

line shown in fig. 5. Taking a sufficient number of realizations the

intermittency factors yx <X> and y2 -t <X2> can be calculated as a function of x

and Y2 as a function of r for x fixed. The result is shown in fig. 6 where the

open symbol represents y and the full symbol Y2. The single point intermittency

factor y is nearly constant, whereas y2 falls off with increasing relative

distance. This implies that the foldedness measure defined in (31) is non-zero,

hence considerable folding takes place in the direction of the slanted line (fig.

5). If the same calculation is done normal to the slanted line in fig. 5, Y and

Y2 turn out to have the same profile shifted by r, hence the folding measure

(31) is zero.

The experiments of Dibble and Schefer [67] in a turbulent H2-air diffusion

flames provide instantaneous density records at fixed x/D - 50 and ylD = 5.1.

Asurt SadaLvror)Snemt

rp"UWsragtln i i.5
/f 1

Fig. 6 Numerical simulation of a v- .
shaped premixed flame (courtesy of W. T. ,.
Ashurst, Sandia Livermore). Intermit- "

* ______________ tency factor yl and y2 along slanted ,
• oUP straight line in fig. 5.W

.. . . , . . , ,. ... . . **.~.* . '. . . ' /
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These records can be used to establish two-point intermittency factors Y2 - < 2>

1 for p(Xt) < Klpma x and P(x_,t+t) > K20ma x

- 0 otherwise

with K1 = 0.9 and K2 = 0.9/0.6 as shown in fig. 7. The intermittency factor

is in this case equal to the two-point correlation of the single-point

indicator functions. The curves in fig. 7 show the typical form of two-point

correlations remaining, however, always positive.

4.. . p- o. fwJ -

-J .. ..O, 0

CI\

402

' \ (3

(2)

.,

0.0 /0 120 2".7

Fig. 7 Turbulent H -air diffusion flames [68]: Two-point intermittency
factors using densi y p(t)

Finally, a single-point closure model [58] for intermittent shear flows in

considered. Th:: details can be found in ref. [58], but it should be noted that

-the closure model consists of transport equations for the intermittency factor y,

the turbulent zone and non-turbulent zone mean velocities, the turbulent zone

stress tensor and the dissipation rate. The stress tensor in the non-turbulent

zone is related locally to the turbulent zone tensor using a closed form of the

Corrsin-Kistler [49] equation. The closure model is applied to the plane jet and

compared to the measurements of Gutmark and Wygnanski [15] in fig. 8 to fig. 10.

The intermittency factor y in fig. 8 is determined with a closure for the source,

Q, which includes the effects of the mean strain rate in the turbulent zone and

the spatial variation of y itself. The mean velocities in the two zones in fig. 9

show that the non-turbulent zone mean decays significantly slower than the

turbulent zone mean, since the shear stress in the former zone is much smaller.
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Fig. 8 Conditional closure
model [58]: Intermittency

Plane lot: Conditional moO factor in plane jet (symbols
o [15])

.A

"e ~ s ; .s i 3s ; .5

at

• .

. Plane jet: Conditional model.

V

Fig. 9 Conditional closure
model [58]:Conditional and

"---..... . .. .... unconditional mean velocities

',0.2- 0- -.. ....... (symbols [15])

a01.25 1.0 1.75 2 .2 2
Eta

, \ "0 .........
PIn10 Conditional closu

*: 0" S model [8: Codtonal and

0 0

0.2" 0 unconditional normal stress .

i (symbols (151)"

0 0.10:0 0.75 1 US2 1.10 L.IS 2 2.21 2.50 2.71 3
ETA

The normal stress component <u' 2 > for both zones and the unconditional case in

fig. 10 combine nearly linearly because the contribution from the relative l-- .

movement of the two zones is small. This is not always the case it is possible .

that the unconditional fluctuations are larger than both zonal fluctuations (for

density fluctuations in ref. f68)).
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6. Conclusions

The idea of conditioning provides a concept for the classification of methods

of decomposition of flow variables describing turbulence. The classification in

local and non-local conditions was discussed and a variety of examples was given.

In particular, allows non-local conditioning the construction of expectations in

phase with recognizable structures provided some of their properties are known.

Conditions, which can be expressed in terms of scalar variables called

discriminators, allow the construction of indicator functions and intermittency

factors as their expectation. The source term in the equation for the
intermittency factor and for local conditioning can be represented in several ways "4w.

leading to the following conclusions. The source is the expectation of the *.*.'-

relative progression velocity of the interface defined by the local condition

times the absolute value of the gradient of the discriminator. This product has

well behaved statistics and is determined by molecular transport and the rate of

formation or destruction of the discriminator at the preset threshold level.

Hence, for exnrmple, the discrimination between turbulent and non-turbulent fluid

with conserved and non-conserved discriminators is not equivalent unless the

formation rate of the discriminator at the threshold level is sufficiently small.

The simple case of two-point conditioning as example for the non-local case allows ..

construction of a measure for the amount of folding of the interface between two

zones without recourse to statistics of multi-valued random functions [45].

Application of the idea of conditioning to turbulent reacting flows reveals the

close connection to the pdf of the discriminating scalar, which is chosen as

mixture fraction for diffusion flames and as progress variables for premixed

flames. Existing closure models for the scalar dissipation in pdf equations can

be applied to the intermittency source in diffusion flames. The flame sheet can

be the interface if the threshold value for the discriminator is set to the
stoichiometric value of the mixture fraction. Several applications show that

conditional information can be extracted from experiment and numerical simulation

and closure models for turbulent shear flows can benefit from these results.
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Appendix

Consider the representation (17) of the intermittency source Q

4(x,t) - <V IV S I 6(s)> (Al)

and Dopazols [49) representation

Qk(Ut) - < - dA V> (A2)

where US denotes the intersection of the neighborhood U of x with the interface--0r'd,

given implicitly by S(x,t) = 0 and V(U) is the volume of U. The surfaces S =

const are assumed to be orientable and sufficiently smooth (at least once

continuity differentiable) such that a unique normal vector n (positive into

zone S > 0) exists nearly everywhere. Both the sequence of neighborhoods U of x, %

and the statistics of V must satisfy certain restrictions to afford the

representation (A2) as explained below. Then holds

= Q * (A3) ' '

To show (A3) we consider a realization for S and V and the fundamental sequence

for the Dirac function

- (1% for - /n2 < < 12

n
6n() { '0  otherwif~-, se n 2  ' U.( >

with en > 0 and n 0 as n . Then the set

K M(t O (Ytn

is formed (9 denotes the three-dimensional flow domain). Now consider a point

x et , then either S(x,t) - 0 or S(x,t) A 0 because S = 0 is a smooth surface. If

S 0 0 an index n* can be found such that

6*(S) - 0 v
and thus n

V SI 6n(S) -0 for n > n*

If S - 0 then (with probability one) the normal vector n through x on S - 0

exists and the intersecting points x , x of n with the surfaces S - €12 02C

and S - - 012 can be found for n > n* for some n*, because the surfaces are

sufficiently smooth. Thus, for x c Kn (t)

IVS I JxC x + 0 (-x X- )

and ( V < O can be assumed, because for V unbounded IQJ and IQ* A Oa)

* I " o\. ,'



-t + V.O(x +- x-) for x e K (t) (A4)
" ! ix- In

VVWSI~n(S)

0 otherwi se

for n > n*. Now construct the neighborhood Un of x as cube with side-length

x+- x-Icentered at x and a side aligned with the normal n , then is

Y( xt)+
1 ,t) + V.(lx- x-i) for Us 0 6 (A)

.. ( n) ff" d Ax x -o:::

U 0 otherwise

where V(Un) A_ xJ is the volume of Un and U5  is the intersection

of U with the surface S a 0. Comarison with (M) yields the result

VIVS a(SS) - ,()>dAV + 0lx- x .)
n U.

and letting n ca

VIVSI 6(S) r 1 rr
Ensemble averaging leads to

<V 1VSJ 1 (S) > - <11im~-.y fdAV>
n~n n Uf

S.S

|;he limition herigtin han scmutes th the expectation if the random
* variablesX

nAY>(A6)dAV
n Ui

* have distribution functions F Wx such that the expectationsn

f A(x) F (dx)

S.converge to a f inite l imit for any continuous A(x) (see theorem 2 of [10] Ch.
* V111.1). Thus under these restrictions on V and the sequence U~ constructecd 5

* above, follows

cVIVSJ 6(S)> - lim <-rr JjdAV> (M6)

SS



The Spectra of Single Reactants in Homogeneous Turbulence

Edward E. O'Brien

Department of Mechanical Engineering, State University of New York at Stony Brook
Stony Brook, NY 11794, USA

A closure is proposed which is appropriate for a numerical study of the spectrum

of a single, chemically-reactive species in turbulence. The objective is to predict

the effect of moderate rate reaction kinetics on scalar spectra in situations in .

which the fluid density is not significantly affected by the reaction. The method

of approach is to use the Fourier transform of the two-point scalar probability K.
density function as the primary independent variable whose evolution from an initial

state is computed. Two closure approximations are needed, one for turbulent trans-

port and one for molecular diffusion. We propose an EDONM-style spectral closure to

latter. These two closures are combined to preserve almost all realizability con-

straints of the system except the coincidence property of two-point density functions.

Preliminary calculations have teen made in the no-reaction limit to reproduce previous

spectral results. Computations of linear reaction kinetic spectra are under way with

the expectation that the results can be compared with previous flux cascade spectral

predictions. More general reaction kinetic situations will also be investigated. ;A

1. Introduction

The earliest theoretical study of chemical reaction in statistically isotropic

velocity and concentration fields is due to Corrsin I. It followed on the heels of
2,3his pioneering work on the properties of temperature fluctuations in turbulence

which, in tandem with the Obukhoff4 paper, laid the ground work for subsequent

investigations in that important field. The problem oF chemical reaction in turbu-

lence is also of significant practical importance, so important in practice that much

of the work of the last two decades has concentrated on modeling inhomogeneous flows

and reactions fields which have immediate applicability to a laboratory or industrial

reacting flows.

Study of the spectra of reactants in turbulence has not been as wide spread as

the study of temperature fluctuations. Corrsin S contributed one of the few papers *3' '

on this aspect of concentration fluctuations with his study of the spectrum of a

first order reaction. Ife used on Onsager-like cascade process applied to the

statistically stationary portion of the spectrum in the equilibrium range of wave
6nurbers. His student, Y. I. Pao , extended these ideas to turbulent mixing of a

multicomponent mixture of reactants, all of which are first order. The second
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order, single species reaction was considered in Consin's earliest paper and its
7

asymptotic behavior in the final period of decay was subsequently deduced7. Other

studies pursued a numerical treatment of the species conservation equation using a

modified version8 of the Direct Interaction 9 approximation for turbulent advection
10

and an inequality preserving moment closure approximation for the reactive terms

Over the last two decades turbulent transport of reacting scalars has received

considerable attention from two fresh viewpoints. One stream of research has focussed

on the probability density function (pdf) of scalar concentrations as the primary

quantity whose evolution is to be modeled and computed11'12'13  while others, espe-

cially from the perspective of combustion, have emphasized the relationship between

turbulence structure and the reaction process There have been some efforts
17 18

to combine both approaches '. In this paper we pursue a continuation of the

former method which has certain important advantages such as a close attachment to

the conservation laws and the ability to incorporate in it various chemical kinetic

schemes without requiring a new closure with each.

It also has disadvantages, the chief of which is the high dimensionality of the

defining equations. In practice, with only a few exceptions to be mentioned later,

this has meant liniting consideration to the 1-point pdf 1 . From a theoretical

point of view the 1-point pdf is on a par with the moment closure theories of .irbu-

lence and turbulent scalar diffusion in the sense that the evolution of length scale,

or any other parameter requiring two-point information such as dissipation rate, must20 ''
be brought into the description in an ad-hoc ranner. The recent work of Pope20

demonstrates this; he has brought the 1-point pdf description of reactive scalars

into close agreement with second order moment closure practice for the transport of

non-reacting scalars in certain turbulent shear flows. A fundamental flaw of one-

point descriptions is their inability to bring in the basic physics associated with -'

a spectrum of eddy sizes.

hiat seems to be missing from the literature on reactive flows is a genre of

spectral closures such as exists for turbulent non-reactive scalar transport and

which have been used in that field to gain insight into the degree of universality D

of certain parameters of second-order modeling. They have also been used to deduce *:......

the proper forms of sub grid-scale eddy parameters in large eddy simulations. The . ....

spectral closures for turbulence which have been most developed are the eddy-damped
21 22

quasinorral Markovian (EDQNH) approximation, the test field model - (TF I), the

direct interaction approximation (DIA) and its cousin the Lagrangian history direct

interaction24 (UIDIA) approximation. A recent paper elaborates on the successes

of EDQN* and TFM with regard to their influence on second order moeeling and their

relationship to the more complicated DIA and LHDIA methods.

In this paper we develop, in the 2-point pdf format, a description of the spatial

(spectral) effects of turbulent transport at a level equivalent to the EDQNt and TF"

approximation; while simultaneously representing, by a suitable closure, composition
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space transport due to reaction and diffusion. The choice of the EDQNM and TFM

methods to approximate turbulent effects is based on the practical consideration

that both DIA and LHDIA in their own right are very demanding on computational

resources. The EDQNM and TFM methods have been shown to preserve energy positivity

and Kolnogoroff scaling at inertial-range wavelengths. Their more subtle properties
2Shave been reviewed recently by Herring et al ; enough is known about them to make

either of them plausible representations of the major spectral features of scalar

mixing in homogeneous turbulence. In this paper we arbitrarily choose ED(8O8 over

TFM, a decision which can be reversed if necessary.

There is no closure for composition space transport which is as well developed

as the EDQNi.I closure is for turbulent spectral transport. The paper by Kuo and
26 27O'Brien , which developed the 2-point levlev approximation for a stochastic "

system undergoing molecular diffusion and reaction, is one of the few to have looked

in detail at two-point pdf equations; another is the seminal work of Lundgren28 who

described the equilibrium range of isotropic turbulence starting from a two-point

velocity pdf description and a pdf closure hypothesis. The Ievlev closure mentioned

above is a formal one which, at the two-point level, has been shown to satisfy all

of the realizability conditions of reduction, coincidence, separation and normaliza-

tion and to give a physically reasonable representation of the evolution of a reacting
26scalar field in composition space

The levlev closure can also be used to represent turbulent convective transport

in Fourier space 27 , but a previous study2 9 showed that it was not feasible to carry

out a numerical solution of the resulting closed equations. Even for transport in
composition space the computer memory requirements of levlev's closure are likely to

be excessive when it is applied in conjunction with an EDQNh1 representation of turbu-

lent spectral transport. In the following pages we outline the Ievlev closure with
a view toward incorporating it into the study when methods are found to make its
solution a reasonable numerical pursuit. However, we initiate the study by adapting

two other closure proposals to the problem of transport of the two-point pdf in
composition space. One is due to Lundgren 28 and amounts to an expansion about the
jointly normal distribution, the other due to Kuo 30 is based on a linear mean square
estim~ate closure. Both are simpler than levlev's formalism but both represent the

coincidence property only approximately. Lundgren's closure is the more attractive

because connection to a standard statistical state is more apparent, as we show

later.

2. Turbulent Mixing Approximation

A scalar concentration *(x,t) satisfying the rate equation

. vu.V V (1)

has a corresponding single-point fine grained density

* "($ -@(x,t))
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which satisfies
Su.V p - D p = - -2-- [(V Vt)] (2)

where u is the turbulent velocity, * designates a (non-random) value of (x,t) and

w is the chemical production rate term supposed, for our purposes, to depend expli-

citly only on concentration.

In (2) the right hand side is concerned with composition space transport, the

left hand side with transport in physical space.

If, for the moment, we ignore the composition space terms, p obeys an equation

analogous to the conservation equation for a non-reacting scalar .;.

a. ,u.V =DV Y 2 (3
TF*

Equation (3) is the starting point for the derivation of the EQW.1 or TFM spec-
* (25)

tral closure methods . For the purpose of this study we will discuss only EDQNt;

both it and TFM are readily found in the literature. By an analogous series of

arguments one can obtain a closed EDQNK equation for the physical space transport of
the two-point pdf P2C(,*21 r,t) = <p(f 1 ,Xl,t) p( 2 ,x 2 ,t)> where the values of at.

the two points (xlX 2) are labelled ($1,42), r = 1X1-X21 and the angle brackets

denote ensemble averages. A form of the result can be written in terms of the one

dimensional Fourier transform of P2. say HC$1,A2,k), where

P2 ~ 1 20r 1 f(, 2Pk k r

We find
31l pf O +z 2 -p 3  C)' l
.al pq X y + z){k p 11(p) E(q) - H(k) E(q) (4

E(q) is the energy spectral density of the turbulence which can be described by a

similar well-known EDQI expression(2 5); q and k are wave numbers; the integral

dpdq is over all (p,q) for which (k, p, q) can form a triangle and (x,y,z) are

cosines of the interior angles opposite (k,p,q). The quantity i pq is an inverse
relaxation time whose prescription is a fundamental parameter of the EDQN method.

Its form has been developed for the mixing of non-reacting scalars so as to guarantee

realiability properties of the resulting spectrum. It may need to be reconsidered

carefully in this context, but we begin with the presumption that it is identical to "ii

the analogous expression in the EDQNM equation for G(k,t), where G is the scalar

spectrum.

The two terms on the right hand side of (2) carry information about pdf trans-

port in composition space due to chemical reaction and turbulent diffusive smearing S
of concentration fluctuations. The latter term requires a closure approximation in '.

composition space (12). Analogously there are residual composition space terms in

the equation for P2( 1*,02,r,t) which have to be subjected to an appropriate closure.

Vk
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3. Transport in Composition Space Due to Molecular Diffusion and Reaction

Equation (4) is in closed form; it must be supplemented by an expression for

the time rate of change of 11 due to composition space transport whenever o(*) is

non-linear (3 ) . If the reaction is linear in *, c(4) can be eliminated from (1) by

" a simple transformation of the time coordinate which leaves the remaining terms in

(I) unchanged; there is then no need to use composition space. One way to treat
(27)

" non-linear reactions is to use the Ievlev approximation technique applied to the

diffusive-reactive terns in the equation for P2 (41, 2 ,r,t). The two-point pdf for
2(26

a stochastic diffusive-reactive system has been explored previously
(26 ) and yields

the following equation for P2 r,t):

_ [()P] + IT2 [c(2)P 2 ] (5)

Wa1 l 2 32 2

where c(1) = lin D v2  E( 51lY

and c(2) = lin D 2 E(O 3101-'2),

In the above expressions the subscripts on $ and x refer to a particular spatial

location. For example, $2 is shorthand for (x 2 ,t), E($10,$ 2) represents a condi-

tional expected value and x3 is a third spatial point whose existence clearly demon-

strates that (5) is not closed but must be approximated. Ievlev provided a framework

for doing this; the details of its application to this particular problem are in the

literature and cannot be repeated here. The end result can be written in the format

of equation (5) but with the following constraints on cl) which yields a closed

" equation for P2 ' satisfying both realizability conditions and uniqueness.

J c( 1 } P2 d = V2 I $2 P2 d

I c(1 ) P2 d $2 - lin V P d (6)
2 r 2 2"

r0O

The realizability conditions guaranteed by the set of equations (5) and (6) are
(26 )  

' -

Reduction f P2 ($2 ,1 ) d =

Coincidence lira P2 ($ 1 ,$ 2 ) a P1 ($ 1 )6($ 1 -$ 2 )
.2 z

Separation lim P2 ($1,$2) = Pl()Pl(02)

Normalization I P2($1 ,$2) d $l d $2 - 1 .4

This system has been examined numerically and has been shown to give a physically

reasonable representation of the evolution of P2 in composition space under diffusion
... 7
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and reaction(26). It has also been demonstrated that singular (atomic) portions of

a two-point pdf are mixed correctly by this approximation.

It is easily shown that the Ievlev closure can be rewritten straight forwardly

in Fourier space as follows:
all..I

.. j L- 0g(1,q) + h (*2 q)] H($1 , 2 ,p,t) d p d q

-111 2I k [g2 (01,q) + h2 ( 2 ,q)] H($1 ,42 ,p,t) d p d q (7)

where gl 2 hi and h are weighting functions uniquely deternined by the constraints

on P2 and its symmetry properties. The symbol A is shorthand for the constraint

k + p.+ q a 0

The realizability conditions listed following Eq. (6) can also be expressed in

Fourier space as:

Reduction f P2 d 2 = Pl( l) 6(k)

Coincidence f P2 (I,$ 2 ,k) d k = Pl($1 ) 6($i-$2)

Separation p k) = 014l' Pl( 2) (k) + B( l2$

Normalization If P2(0,2',k) d $ *2 a 6(k)

Equations (6) and (7) can be solved simultaneously by numerical computation

given an initial state, and it can be shown that the solution will satisfy (8) if the

initial state does.

In principle the levlev closure for the composition space evolution of

ii( 1, 2 ,k,t) can be combined with the EDQNII closure for simultaneous evolution of H

in wave number space. The combination oP the two closures can be shown to be formally

adequate in the sense of satisfying constraints. We have found it to be unrealisti-

cally demanding of computational resources at present flecause of the multiple integral

format of the Ievlev equation which exacerbates the difficulty of high dimensionality

presented by l1($1, 2 ,k,t). We now invoke two simpler closed representations of

composition space transport due to diffusion as potential replacements for the levlev ,

approximation.

The first is a linear mean square estimate (LDISF) closure suggested by Kuo 
(20)

.

It satisfies all the realizability conditions (8) except coincidence, which it

satisfies exactly only when the process under consideration is jointly normal. Using

INSE approximations, one can write

E( 310'$ , 2  a1 $1 + a2 2

where a P3 1 " 32 12  and a P32 312 .
1- p12  -p 12

Pij (r,t) is the correlation coefficient of 0,,0 Y
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Since only small structure is likely to be well represented by the homogeneity assump-

tion it is consistent to approximate pij by the form

p - exp[-r 2 .s2(t)]

where A is the scalar microscale which will be obtained from the two-point pdf, at
S

each time step in the solution process and pij is replaced by a single scalar corre-

lation function p(r,t).

The connection between P and H can be derived

p(rt) = W 1$2 H(01,02.k,t) sink d 1 d $2 d k
k r d

We have found it to be most convenient to represent the effect of molecular

diffusion in composition space by using spatial coordinates as independent variables

and subsequently converting to a wave number description by a fast Fourier transform

after each tine step of the evolution.

In composition space using the LHSE approximation for diffusion alone (reaction "r

can be treated exactly) we find

P2. t ) 4 2 2

1-p

D _- P 2 ( 19 2 ) $ P (
{4P (6l21 -2 2 A P2 ( ) (9)

This approximate representation of composition space transport, combined with .-

the role of reaction in composition space can then be added to the EDQ 4O approximation

for spectral transport (a) to produce a closed evolution equation appropriate to

describe non-linear reactants.

A second closure approximation which might usefully replace the levlev scheme

is a two-point pdf closure used by Lundgren (18) in a study of turbulence dynamics.

It can be represented as a closure for the three-point pdf which is embedded in

conditional expectations such as E(5I ,$2). For example

E($310I 902 ) = If $3 P3 ($3J$1 '$ 2) d $z d

= P( $) If $3 P3 (0 3 $1 0$2) d 1 d $2 (10)

By analogy with Lundgren's work an approximation for P3(,01 4 2 9$3) is invoked
E3

which is an expansion about the multivariate Gaussian state. Writing P($ 1,02, 3 ) as
P3(1,2,3) and analogously for lower order pdf's the approximation is:

P 3 (1,2,3) - P1(I)P2 (2,3) + P1 (2) P2(",3) + P1 (3) P2 (1,2) - 2Pl(l) Pl(2) Pl(3)

G G G G G '+ p(1,2,3) - PGCl) P(23) P(2) P2 (1,3) P (3) P2 ( 1 .2)
.2 1 2 1 (11)2

+ 2 P G () PI(2) PG(3),
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where p, for n = 1,2 or 3 is the jointly Gaussian density with the same mean and

correlation values as P nn

This expansion satisfies all realizability constraints except coincidence; and

it can be combined with EDQNM and composition space transport due to reaction to

produce a closed evolution equation for Hi($, 2 k,t). The relationship between

Lundgren's expansion (11) and Kuo's closure (9) can be examined by computing

E($ VI,2)from (10) using (11) and inserting the result into the diffusive terms

of (5). It turns out, for example, that
( 1)  = LMSE + D 1  JV2r ~ l e ) e C l l , ),

W r- -) lC PI( (2))1

D r-V Pr)($1-") P1 (15 1 Pl($2)J

where the first term, written LMSE, signifies the terms obtained using Kuo's approx-

imation. It is apparent that the two approximations coincide when the process is a

normal one but, in general, Lundgren's closure expresses better the departure from

normality.

* 4. Combined Closures for Turbulent Mixing of a Reactive Scalar

For freely decaying isotropic fluctuation fields the case of turbulent transport

*" of a linear reaction is amenable to a mathematical transformation of the species

conservation equation which reduces it to an equation of transport of a non-reacting

scalar (51 . All of the closures of the previous section can be shown to preserve

this property.

For two-species reacting systems which have unity Lewis number it is possible

to obtain the statistics of a progress variable related to species concentrations

by employing the equation of transport of a non-reacting scalar {17) . When the

species are unpremixed and the reaction rate is also extremely rapid the statistics

of the concentration fluctuations can be computed directly from that of the progress
(32)variable 2

. All the closures of the previous section also preserve this feature.

More generally for very rapid reaction of dynamically passive reactants which are

not premixed the reaction effects are diffusion limited and modify only the small

scale segment of the scalar spectrum. In this case one can reasonably expect to

modify the known statistics of scalars in the equilibrium ranges of high Reynolds

number turbulence to describe the behavior of reactants which obey specified kinetic *

laws, without having to invoke the full closure apparatus described in this paper.

We do not know that this has yet been done.

A more difficult situation arises with finite rate reactions which may only be

treated by direct numerical computation of spectral decay. Since the task is formi-

* .120



dable it makes sense to follow Ccrrsin's lead and bepin by investigating a dynamically

passive, single-species, dilute reaction to establish the feasability of formulating

and solving a closure equation which is adequate in both corposition and spectral

spaces.

The strategy is to obtain a closed equation for ii(f 1 2 ,k,t) whose evolution has

terms incorporating turbulent mixing (EDQ*I) and transport in composition space due

to reaction and molecular diffusion (Ievlev, Kuo or Lundgren). Ideally, the closure

should be such as to satisfy (4) in the absence of reaction so that standard non-

reacting scalar spectral results obtain, and should satisfy (5) and (6) when turbu-

lence is absent (stochastically distributed molecular diffusion and reaction).

The four realizability conditions on P( lV 2 ,k,t),(8),should also be satisfied

by the closure. This suggests combining (4) and (7) by simply summing the right hand

sides of each equation and adding the closed chemical reaction term to it to obtain

an expression for - (01,42 ,k,t), which will automatically satisfy the constraints

mentioned above. A time splitting technique (3 3) can be used to compute alternately

the evolution of H in each of the two spaces, Fourier space and composition space.

Fourier space transport has been successfully computed for the evolution of the

spectrum of a single passive scalar (34) using a technique due to Leith ('S ) to solve

the time-consuming integrals over all triangles k + p + q = 0 which occur in the

EDQNT approximation. We have successfully repeated those calculations for (4).

Preliminary calculations of (7) ard the constraints associated with it, have

shown that it is excessively demanding of computer resources to compute (4) and (7)

simultaneously unless novel technique can be found to simplify the numerical solution.

An alternative is to replace the Ievlev closure (7) by either the Kuo closure (9) or

the Lundgren closure (11). We are focussing on the latter because it appears to be

better suited for the treatment of non-noral random variables, which a non-negative

variable such as concentration must always be. Since (11) is clearly an expansion

about the normal process we expect it to be valid only for slow to moderate speed

reaction kinetics, which is the limit unable to be treated by the progress variable
(32) k

analog referred to earlier It should also be noted that use of Lundgren's
closure leads to a reasonable value of the Kolmogoroff constant in the inertial sub-

range of the spectrum of a non-reacting passive scalar contaminant( 28) .

No definitive spectral results have yet been obtained for any reactive species

by the method outlined here. If the computations succeed we expect, inter alia, to

compare the results with predictions of various spectral ranges for linearly reacting

species made byCorrsintwo decades ago (5 ) without any computer assistance.
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The Dynamics of Turbulent Spots
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University of Washington, Seattle, WA 98195, USA
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In this article we present a critical review of the present state of

knowledge of turbulent spots. We discuss the properties of both new-

born as well as fully-developed spots. Both ensemble-averaged results

and also the underlying structure of the spot are presented. It is

shown that the ensemble-averaged results can be misleading, and that
the spot has many features similar to those of a fully-turbulent >
boundary layer. The mechanisms by which a turbulent spot spreads into

the surrounding fluid, which were first suggested by Corrsin and

Kistler (1955), will be elaborated. Finally, similarities between

spots and other flows will be discussed.

1. Introduction

In 1951 Emmons, while studying the flow of water over a nearly horizon-

tal water table, observed that transition to turbulence occurred

through the appearance of small, individual patches of turbulence in

an otherwise laminar boundary layer. These patches, which he termed

spots, started at random instants in space and time as very small %

regions of turbulence, and grew in an approximately linear manner as

they were swept downstream. The number and size of the spots increased

in the downstream direction until the spots amalgamated into a fully-

turbulent boundary layer. Based upon these results, Emmons proposed

that transition from laminar to turbulent flow occurs through the

generation, growth, and amalgamation of turbulent spots.
The viewpoint that turbulent spots play a central role in boundary

layer transition has become generally accepted. Furthermore it has

been suggested that spots are dynamically similar to turbulent

boundary layers but simpler, so that their study might be profitable

in shedding light on the complex dynamics of turbulent boundary layers.

It has been also suggested that turbulent boundary layers might be a

composite of turbulent spots, so that the spots are the basic building

block of the boundary layer. Thus the study of turbulent spots has be-
come an essential part of the study of both boundary layer transition

and turbulence.
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Important dynamical questions with regard to turbulent spots are:

i) under what conditions in a laminar boundary layer can a spot

exist; (ii) what are the internal dynamics of the spot; (iii) how does

the spot grow; and (iv) how is the spot (re)generated. These ques-

tions have received considerable attention since Emmons' original

study.

In 1955 Corrsin & Kistler performed an experimental and theoretical

study of the freestream boundaries of turbulent flows. The principle

objective was the study of the interface between the turbulent boundary

layer fluid and the contiguous nonturbulent fluid in the freestream,

and of how this interface propagates normal to the boundary. They

found that the front consists of a very thin "superlayer" and propa-

gates through the direct action of viscous forces transmitting random

vorticity to the previously nonturbulent, irrotational fluid. This

process, now known as entrainment, explains the propagation normal to

the boundary of both the turbulent boundary layer and the turbulent

spot. However, Corrsin and Kistler, in discussing the sjzeading cf

the turbulent spot tangential to the boundary, pointed out that

........ it is possible that the dominant turbulence propagation mech-

anism is different. In particular, it may be that a destabilization

of the already rotational flow occurs in addition to a transmission of
random vorticity by direct viscous action at the turbulent-laminar

boundary'. We will show in this article that the spread of the spot
by entrainment normal to the boundary and destabilization tangent to

the boundary are the principle mechanisms for spot growth.

Other research has shed considerable light on the questions raised

* above. A coherent picture of the spot is forming, although much still

remains to be discovered. The objectives of this article are (i) to

present a critical review of the present state of knowledge of turbu-

.lent spots; (ii) to explore possible relationships between spots and

other flows; and (iii) to delineate areas needing further research.

In the next section we will discuss the initial stages of the spot

LA (i.e., the incipient, or embryo spot); in the third section the average

properties of the spot will be detailed; in the fourth section we will
* describe some of the underlying dynamics of the spot; in the fifth

section the spot will be discussed in relation to several other flows;

and finally in the last section we will present our opinions on the=..

overall picture of the spot and possible directions for future research.

2. The Incipient Spot

The two dimensional linear stability theory (Tollmien, 1931) is now
well understood and verified experimentally (Schubauer & Skramstad,1



1948). However, this theory does not explain the mechanism of actual

transition which is strongly three-dimensional in nature (Klebanoff,

Tidstrom & Sargent, 1962; Kovasznay, Komoda & Vasudeva, 1962). In an

attempt to include some of the three-dimensional effects, Benjamin

(1961) and Criminale & Kovasznay (1962) calculated the fate of an

isolated pulse-like disturbance in a laminar boundary layer with a

Blasius velocity profile. They used linear stability theory combined

with asymptotic methods to evaluate the solutions in the far field.

However, because of the asymptotic approximations used, the overlap

for making direct comparisons of laboratory experiments with theories

was minimal.

Experimentally, Vasudeva (1967) applied a localized disturbance to a

boundary layer to study its subsequent development both in its initial,

linear phase and in the later, highly nonlinear range. This later

stage compares with the breakdown pattern obtained in the experiments

by Klebanoff et al. (1962) using doubly periodic excitation (periodic
in time and in the spanwise direction). Vasudeva (1967) speculated
that the laminar instability created a localized disturbance which

further developed by nonlinear amplification into a local spot of

incipient turbulence, whose form did not depend on the laminar

instability theory.

Gaster (1975, 1978) and Gaster& Grant (1975) have performed carefully

controlled experiments along with theoretical/numerical solutions
which avoid asymptotic approximations. These studies have led to a

fairly complete picture of the initial stages of growth of the spot,

which we will now describe.

Gaster & Grant (1975) carried out experiments on a flat-plate boundary

layer in a low turbulence-level wind tunnel. They created a disturbed
patch or packet of waves by impulsively disturbing the laminar boundary

layer at a point using an acoustic pulse. The initial impulsive

disturbance excited a broad band of modes, and a wave packet formed

through selective amplification and interference of the most unstable
waves. This pulse excitation simulated natural transition better than g4

a periodic wave maker, since excitation by freestream turbulence occur-

ring during the early stages of natural transition also involves a

wide spectrum of modes. Disturbances were aetected with hot-wire

anemometers placed slightly outside the boundary layer, near where the

disturbance level was the highest. Gaster and Grant overcame fairly
severe signal-to-noise ratio problems by both ensemble averaging and
digitally filtering their signals. The temporal development of the '.

wave system was measured for a range of locations in the streamwise

x) and lateral (z) directions, giving a fairly complete picture of
the incipient spot development.
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* Near the source, the wave system appeared to be elliptically-shaped

(Figure 1), and then gradually developed a distinctive bowed shape as
it was swept downstream. In the early stages of development it
appeared to be a wave packet which grew and changed due to amplitude
modulation and dispersion of the unstable waves. However, further

downstream the packet became somewhat distorted, with maxima appearing

symmetrically off the centerline. This distortion appeared to be due

to the rapid growth in a band of oblique unstable waves. Harmonics of

these waves appeared, indicating that the dynamics of the wave packet '
" were becoming nonlinear. Steep shear layers resulted (Gaster, 1978), -

with structures similar to hairpin vortices forming. The formation of

these vortices is reminescent of the bursting process in turbulent

boundary layers.
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The steep shear layers led to a local violent breakdown of the flow,

quite unlike that observed in experiments with periodic wave trains

(Klebanoff, Tidstrom & Sargent, 1962). In fact, significantly, it was

found that these modulated waves (wave packets) break down at much

lower amplitude than periodic wave trains. The breakdown appeared to

be part of a cascading process. The first nonlinearities introduced

frequencies into the flow which were about an order of magnitude

higher than the frequencies in the initial wave packet. Then these

higher frequency instabilities were observed in turn to break down

into disturbances of frequencies of an order of magnitude larger. It

was suggested that this cascading process continued until arrested by

viscosity.

Gaster (1975) also examined this flow theoretically. His method

avoided the asymptotic analyses of former studies (Benjamin, 1961;

Criminale & Kovasznay, 1962), and consisted of performing a numerical

summation over a linear combination of unstable modes of all wave- j
lengths and frequencies. His initial spectrum was assumed to be flat,

in approximate agreement with the laboratory data, and he treated the , '"

boundary layer growth in an ad hoc manner. The overall shape and

growth characteristics of the incipient spot were well predicted by

this theory, as shown in Figure 2. There was also good agreement with

the details of the flow in the early stages of development. However,

the irregular distortions and subsequent breakdown were, of course,

* not predicted by this linear theory. .

Amini (1978) conducted a wind tunnel experiment of the incipient spot.

He introduced a weak point disturbance in an unstable laminar boundary

layer developing on a flat plate. Amini used hot-wire anemometers to

measure the streamwise velocity component of the disturbance prior to

breakdown into a turbulent spot. The disturbance structure evolved

rapidly in time, its length increasing by almost 100 percent during

transit past a fixed probe. The contour of this structure in a plan

Figure 2. Perspective view of a"'

gnwi.v wave packet: Comparison between ..

Cotheory and experiment. (From Gaster,
1981)

a. Expeiment b. Theory
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view was arrowhead in shape. Velocity measurements far from the wall

and in the plane of symmetry of the structure indicated the presence

of small OspikesO, similar to the ones observed in the breakdown stage

of Tollmien-Schlicting waves (Klebanoff et al., 1962). Close to the

wall, a velocity excess occurred. In the spanwise direction alternate

regions of streamwise momentum deficit and excess developed.

Leonard (1980, 1981) used a three-dimensional vortex filament descrip-
tion of the vorticity field to numerically simulate an incipient turbu-
lent spot as it evolved from a localized disturbance in a laminar
boundary layer. The filaments were marked with a series of node points
which were tracked in a Lagrangian frame of reference. The numerical
results were limited, since the model could satisfactorily represent
only the very early time development of a spot away from the wall
region. Nevertheless, good agreement with experiments were achieved
for the gross properties of the embryo spot, including the velocities
of the leading and trailing interfaces and the velocity perturbation
away from the wall.
More recently, the present authors performed flow visualization experi-
ments of the early stages of the spot. The study was conducted by
towing a flat plate through a water channel. The spots were initiated
by ejecting small amounts of water through a minute hole on the working

* surface. In order to visualize the embryo spot, closely-spaced fluore-

scent dye lines oriented parallel to the flow direction were released
into the flow near the wall. The dye lines were excited with a sheet
of laser light formed by projecting a laser belam onto a glass rod
transverse to the axis of the beam. When observed from a plan view,
these lines were first seen to be straight. However as the spot began
to develop, these lines experienced a wave-type motion (Figure 3), with

wavelength and phase speed approximately equal to the corresponding
wavelength and phase speed of the most unstable wave (based upon linear
stability theory). This wavy motion was followed by a very rapid
breakdown into turbulence. As the incipient spot was developing, it
was also moving downstream. However, the photographs in Figure 3 have

been shifted accordingly, so that the transition events would be
depicted in a frame of reference moving with the embryo spot.
Perry, Lim & Teh (1981) also used flow visualization techniques to
study the early stages of development of the spot. Their experiments %
were carried out in a wind tunnel, using smoke to visualize the flow.
The smoke was made visible using a laser sheet. Spots were tnitiated
by a short pulse of air from a hole drilled in the tunnnel floor. The
air pressure in the pulse was adjusted so that a spot would just form
in the test section of the tunnel. If the air pressure was too large,
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Fig. 3

t 1.0...,

.,4,

t 1.2 t A1.4

Figure 3. Dye streaks visualization of an incipient spot; t is time in seconds after
initiation, R =-2x 10 5

Figure 4. Magnified plan view of the leading edge of a turbulent spot in the early
stages of development

the initial stages of the spot would be modified significantly,
although the latter stages would be much the same as any spot.
Perry et al. concluded from their visualization studies that the
incipient spot appeared to be an array of A-shaped vortices (alter-

natively called hairpin vortices, horseshoe vortices or vortex loops)
leaning forward in the flow direction. The vortices appeared to be
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very similar to the tightly-packed array of vortices suggested for the

structure of fully-turbulent boundary layers by Theodorsen (1952, 1955)

and observed recently by Head & Bandyopadhyay (1978). Figure 4 is a

photograph taken by the present authors to depict the early stages of

the spot. In this picture, fluorescent dye was painted across a
section of the flat plate downstream of the spot generator. The dye
was excited with a horizontal sheet of laser light at y = 0, and the
camera was zoomed-in to reveal a magnified plan view of the leading
edge of the turbulent spot in the early stages of development. A-shaped

vortices can be observed, especially in the region directly upstream

of the leading interface.

From their observations, Perry et al. hypothesized a sequence of events <
which explains the early development of the spot. The undisturbed
boundary layer flow was considered as an array of vortex filaments

oriented in the lateral (z) direction. The disturbance introduced by

the wall air pli causud a local bending of a (pack of) vortex fila-
ment(s), resulting in a V-shaped vortex, as shown Fl , -, .>:7ey

Vortex Filament ILateral Propagation

. b.

-?" -" Hea-Shoped ZoneOf Densely Packed Folds C.

Figure 5. Incipient spot. (a) Vortex filament develops an Undulation. (b) The filaent

,%q in front develops more lateral undulations and Induces Disturbances in the filaments"
_' further downstream. (c) Footprints corresponding to the folds in (b). '

Wrom Perry et al., 1981) " '
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disturbances propagated laterally, causing vortices to develop on each

side of the primary vortex (Figure 5b). A-shaped vorticies formed,

which were swept downstream over previously undisturbed flow. These

vortices induced disturbances below them which caused the underlying

boundary layer to break down, again in the form of A-shaped vortices.

In this way the spot propagated itself forward and laterally at the
same time. The "footprints' corresponding to this hypothesized model
of the spot are the densely packed folds portrayed schematically in

Figure 5c.

It is possible that the results of Perry et al. are closely related to
the experiments of Gaster & Grant (1975). The lateral, wavy spread of

the disturbance could be related to the Tollmein-Schlicting wave propa-

gation in the wave-packet model of Gaster (1975). The breakdown into
downstream leaning A-shaped vortices is at least qualitatively simi-

lar to the nonlinear breakdown described by Gaster (1978). Perhaps

quantitative analysis of the visualizations of Perry et al. could
determine this.

3. Average Properties of Spots

Many investigators have used fast-response probes to study artificially

initiated turbulent spots. Schubauer & Klebanoff (1956) used hot-wire
anemometers to measure the velocity signals and celerities associated
with the turbulent spot. They determined the general shape of the N'
spot, its spread angle and its propagation velocity. The lateral

spread angle of a turbulent spot is typically 100 to each side of the
plane of symmetry. This angle changes with the imposition of a pres-
sure gradient, and has a weak dependence on the Reynolds number

(Wygnanski, 1981; Wygnanski et al., 1982). In a plan view, the spot
has an arrowhead shape, with a leading interface convecting downstream
at a speed of about 90 percent of the freestream flow speed. Along
the sides of the spot, this convection speed decreases monotonically '
to about 50 percent of the freestream speed at the extreme spanwise

position. The trailing interface convects at a constant 50 percent of
the ambient speed (Wygnanski et al., 1976).

The Schubauer & Klebanoff (1956) measurements indicated the presence

of a *calmed regions immediately following the spot. The flow in this
region is characterized by a relatively full velocity profile, so that

it is more stable than the surrounding Blasius flow. Coles & Barker

(1975) used conditional sampling techniques to study the spot's velo-
city field. By assuming a two-dimensional mean flow, they educed the

streamline pattern in the center of the spot. They successfully

produced a synthetic turbulent boundary layer by generating regular
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*arrays of spots, and suggested a relation between turbulent spots and

bursting events in a fully developed turbulent boundary layer.

Wygnanski, Sokolov & Friedman (1976) used V-type hot-wire anemometers

to measure the longitudinal, normal and spanwise components of the

mean velocity in the interior of spark-generated turbulent spots. As

a turbulent spot passed by a fixed velocity probe near the surface,

the probe registered an abrupt acceleration that continued up to the

vicinity of the trailing edge. Accordingly, the skin friction

increased towards the trailing interface. The mean velocity profiles

in the interior of the spot were found to be the same as that in a

turbulent boundary layer, and could be represented by the universal

logarithmic distribution. The displacement thickness and momentum

thickness changed rapidly within the spot; however, the shape factor

remained at the constant value of 1.5.

Wygnanski et al. (1976) developed an elaborate scheme to obtain statis-

tical data on the spot by ensemble averaging the more or less repeat-

able events. To avoid smearing out the sharpness of the spot's inter-

face, they performed frequency filtering to yield the envelope of the

turbulent fluctuation component of each individual spot. This was com-

pared with a fixed threshold level to obtain the leading and trailing

edge times. Wygnanski et al. (1976) have charted the shape of the spot

in three-dimensions and have established that far downstream it becomes

independent of the initial disturbance. An example of their results

*1" is shown in Figure 6, which portrays the development of the turbulent

spot along its plane of symmetry. In Figure 6a, the spot generator was

located 30 cm from the leading edge of a flat plate, while in Figure 6b

it was placed 90 cm further downstream, the air freestream velocity

being maintained at 940 cm/sec in both cases (R6*Igenerator 508 and

1220, respectively). The numbers shown on the abscissa indicate the

average distance of the leaoing interface from the generator position,

integrated over the height of the spot and ensemble-averaged with

- respect to the number of events. The maximum height of the spot

corresponds approximately to the thickness of a hypothetical turbulent

boundary layer, originating at the spot generator's location, and with

initial thickness equal to that of the laminar boundary layer at the

same location. The height of the leading interface's overhang corre-

sponds roughly to the thickness of the laminar boundary layer.

Wygnanski et al. (1976) used the velocity data to calculate the stream-

lines in the plane of symmetry of the spot in a frame of reference

moving with respect to either the leading or the trailing interface of

the spot. In the former frame of reference, they observed an extremly

large eddy (vortex) extending in the vertical direction well beyond
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Figure 6. Elevation views of developing spots; numbers shown on the abscissa indicate
the average distance of the leading interface from the spot generator. (a) Generator
located 30 cm from leadinq edge. (b) 90 cm. (From Wygnanski et al., 1976)

the maximum height of the spot. This large eddy almost disappeared

when the flow pattern was considered relative to the trailing edge of

the spot.

Since the final transition to turbulence in a boundary layer is accom-

plished by the amalgamation of turbulent spots, the possibility exists

that the spot and the large eddy structure (in the turbulent boundary

layer) may have something in common. To explore this notion Zilberman,

Wygnanski & Kaplan (1977) extended the Wygnanski et al. (1976) work to

track the structure of the turbulent spot as it merged and interacted

with a turbulent boundary layer. They showed that the spot structure

tracked in the turbulent boundary layer retained its identity and .
suffered a negligible loss of intensity, in spite of the random buffet-

ing by the surrounding turbulent fluid. The structure exhibited

features in detailed agreement with those of the outer region of the

turbulent boundary layer, such as a convection speed of 0.9 U., and

. was consistent with existing two- and three-point space-time corre-

lations taken in a turbulent boundary layer (Kovasznay, Kibens &

Blackwelder, 1970).

Laser-Doppler velocity measurements for the flow in the plane of symme-

try of a turbulent spot were conducted in a water tunnel by Cantwell,

Coles & Dimotakis (1978). The primary objective of their work was to

develop conditional sampling techniques which take into account the
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turbulent spot growth in appropriate similarity co-ordinates, thus

removing a major objection to previous work (Coles & Barker, 1975;

Wygnanski et al., 1976). Cantwell et al. (1978) graphically integrated

the autonomous system of equations for the unsteady particle displace-

ments, and obtained particle trajectories in an invariant form. Repre- . .

sentative particle paths from their results are sketched in Figure 7.

The particle paths are shown as dashed lines inside the body of the

spot, which is indicated by the solid line. In this analysis, Cantwell

et al. (1978) have neglected turbulent dispersion. From this figure,

they concluded that an ensemble-averaged spot contains two vortex

structures: the large transverse vortex identified by Coles & Barker

(1975) and Wygnanski et al. (1976), and a secondary vortex close to

the wall near the rear of the spot.

FLOW, -

0.010

0.005 ....

.4 0

0.6 0.8 1.0
Figure 7. Sketch of particle trajectories in and around a turbulent spot; C and n

are the concial variables -to) and U t respectively. (From Cantwell
UM(t- 0  UO (t repciey0(rnCnw

et al.., 1978)
.°.4

Wygnanski, Haritondis & Kaplan (1979) conducted an experimental in-
vestigation in the region following the passage of an isolated tur-
bulent spot. Their hot-wire measurements revealed the existence of a

pair of oblique wave packets that trailed the tips of the spot. The

packets were swept at an angle of approximately 400, and exhibited
frequency and wave speed characteristics in agreement with predictions
made for oblique Tollmien-Schlichting waves. No waves existed near
the centerline of the spot, not even in the calmed region where flow

visualization methods indicated the existence of orderly streamwise

vortices (Elder, 1960). Wygnanski et al. (1979) speculated that the
shape of a turbulent spot, its rate of growth and its spreading angle
are related to the accompanying pair of wave packets. These wave

packets broke down by generating strong shear layers in both the span-
wise and normal directions, giving rise to inflectional, highly un-
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stable velocity profiles. The vertical shear layers had a character-

istic dimension which was similar to the spacing between low-speed

streaks in a fully developed turbulent boundary layer.

Although most of the information available on the structure of turbu-

lent spots were obtained from flow visualization or velocity measure-

ments, additional important data can be gleaned from measuring the

fluctuations in the wall-pressure field or in the concentration of a

scalar contaminant within a turbulent spot. Van Atta & Helland (1980)

and Atonia, Chambers, Sokolov & Van Atta (1981) used temperature con-

tamination to study the structure of a turbulent spot. They heated a

flat plate to produce a surface temperature of about 1000C. Tempera-

ture measurements within a turbulent spot evolving in a laminar boundary K
layer revealed the existence of "cold* regions near the wall and "hot"

regions far from the wall. The temperature disturbance relative to

the laminar undisturbed values showed a structure strongly anticorre-

lated with contours of the longitudinal velocity component disturbance.

Mautner & Van Atta (1982) measured the wall-pressure field associated

with artificially generated turbulent spots in a flat-plate laminar

boundary layer. The large-scale structure and predominant characteris-

tics of the wall-pressure signatures were determined from ensemble-

averaged wall-pressure distributions at several streamwise and trans-

verse locations.

4. Underlying Structure of Turbulent Spots

From various experimental studies, especially those using probe

measurements and ensemble averaging techniques, a fairly complete pic-

ture of the overall behavior of the turbulent spot has been obtained.

This work does not, however, tell us much about the underlying physical

mechanisms which determine the behavior of the spot. Such information
can often be obtained more easily using flow visualization. In this

section we will discuss some of the results which provide information

about this underlying structure.

Emmons (1951) first observed spots through disturbances made by the

spots on the water surface of his inclined, free-surface water table.

From these visualizations he was able to determine the approximate

shape of the spots as well as their lateral growth rates. Elder (1960)

later studied turbulent spots in a boundary layer produced in a water

tunnel, and used dye to visualize the spots. Dye visualization allows

for the observation of many of the overall characteristics of the spot,

but also reveals some of the detailed structures in the flow. Figure 8

is a photograph taken from Elder's work of the plan view of a turbulent

spot using dye visualization methods. Food color dye was emitted from
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Figure 8. Conventional dye visualization of a turbulent spot; R. = 3 x 105 . (From
Elder, 1960)

a slot placed upstream of the initiation of the spot, and was illu-

minated with flood lights. The spot can easily be seen as it entrains

dye from the wall region. The spot has a characteristic arrow-head

shape, with the apex of the arrow oriented in the downstream direction
(consistent with probe measurement results discussed in the previous

section). Mitchner (1954) has noted, however, that a turbulent spot

developing in a shallow, free-surface flow (e.g., a shallow water
table) has a significantly different shape, with its apex oriented in

the upstream direction. 5:

In addition to the overall shape of the spot, Figure 8 also reveals

streak-like structures near the wall. These structures are easiest to

recognize near the rear of the spot. They are reminiscent of the

streaks observed near the wall in turbulent boundary layers (see, e.g.,
Blackwelder & Eckelmann, 1979). These turbulent boundary layer studies

have revealed that the streaks are accumulations of dye produced by

longitudinally-oriented vortex pairs located very near the wall.
Cantwell, Coles & Dimotakis (1978) used a different visualization

method which allowed better observation of these structures in turbu-

lent spots (Figure 9). They employed an extremely dense suspension of
aluminium flakes in a water channel, and observed the flow near the

boundary of a transparent wall. The aluminium flakes responded almost

instantaneously to the local strain-rate field in the flow, giving an
instantaneous picture, as opposed to the time-integrated view obtained

from dye visualization. The depth-of-view in the figure is the lower

part of the sublayer, so that the method also selects out for viewing

only the flow very near the wall. The streaks, easily observed in

this figure, are highly elongated in the flow direction. Analysis of

the streak spacing gave a value of 86 wall units, close to the gener-
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.. .gui ' ij. Aluminum flakes visualization of sublayer streaks for turbulent spots in:1 water; Rx Z 2 x 10 5 . (From Cantwell et al., 1978)

ally accepted value for turbulent boundary layers of 100. Perry et al.
(1981) also estimated the streak spacing from their visualizations of

the incipient spot and obtained values in the range of 80 to 100, again
close to the value of 100 for turbulent boundary layers. Thus the

behavior of the spots near the boundary appears to be very similar to
that of a turbulent boundary layer.
Usual dye methods allow an overall view of the turbulent spot. How-
ever, the use of fluorescent dyes together with laser light allows one
to observe a particular plane in the spot, and thus obtain better in-
formation on the detailed structure of the spot. Figure 10 shows a

plan view of a turbulent spot moving from left to right. In this
experiment (Gad-el-Hak et al., 1981) fluorescent dye was emitted from
a spanwise slot upstream of the spot initiation point, and an x-z

.EFLOW "8'

-%

Fiqurc. 10. Visualization of a turbulent spot using fluorescent dye and a sheet of
laser light at y =0; R 5x 10 5. (From Gad-el-Hak et al., 1981)- x

' • . -. 137 -:'
_" .". '. ,"- .-"-"..%, .. . .-", "." " %.- . . I " . . ", ,.. ". '.'.. , %, ,. "% -, ,, . .. ."-"., .- -•- . " '' '"" ,',"." ...-...,,-,..', 'v . , .. 'V¢' .. 4, . . . ., , ,. .. . ...,, .. . .. ...:,....



plane located at the wall (y 0) was illuminated with a sheet of
* laser light. Dye in both the laminar boundary layer and also in the.*

* turbulent spot are easily distinguished in this figure. The light

I sheet illumination was provided from both sides (the top and bottom in

1 Fig.
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the figure). Since some light absorption occurs, the sides of the

figure appear brighter than the center. As the spot moves over the

sheet of dye, it scours dye from the wall region and diffuses it into

the spot. The scouring leaves little dye at the wall in the calmed

region behind the spot, resulting in the dark, triangular-shaped region

to the left. To the right, the general arrowhead shape of the active

part of the spot can be seen. It is interesting to note, however, that

in the calmed region the dye is seeping in from the left and forming

streak-like structures, indicating that counter-rotating vortices still

persist at the wall in this region. Some evidence of streaks also

appears at the rear of the active region of the spot; however, these

are better observed with the visualization methods discussed above.

Gad-el-Hak et al. (1981) also conducted experiments using other eleva-

tions of the light sheet (see, e.g., Figure 11). For example, in one

run an x-z plane located about two laminar boundary layer thicknesses

above the plate was illuminated. Cin6 films from this experiment re-

vealed distinct structures in the spot as they moved away from the wall J

and penetrated the light sheet. First several eddies appeared in this

plane. Then, as the spot developed, these eddies remained relatively .,

coherent, and new ones appeared towards the rear of the spot. There

was a slight tendency for the new eddies to first appear near the wing-

tips, and later in the middle of the spot. Both the streamwise and

spanwise length scales of these eddies were approximately equal to a

turbulent boundary layer thickness. Thus in the longitudinal direc-

tion, the growth of the spot appears to be due to the addition of new

eddies on the upstream side of the spot. This manner of growth is con-

sistent with the ensemble-averaged results of Cantwell et al. (1978).

While Figure 10 shows a plan view of a spot in a particular fixed x-z

plane, Figure 11 shows two x-z cross-sections of the spot at an in-
stant in time. Figure lla gives the spot in a plane very near to the

wall (y = 0), while Figure llb is a view in a plane approximately

one laminar boundary layer thickness above the boundary. The extremely

large overhang region, which was apparent in the ensemble measurements
3 of Wygnanski et al. (1976) and Cantwell et al. (1978), is also apparent

from these figures. This overhang region appeared to be rather pas-

sive, not growing very rapidly; but it exerted considerable influence

on the laminar flow below it.

Figure 12 (frou Gad-el-Hak et al., 1981) is a photograph of a plan

view of the spot at a fraction of the boundary layer thickness above

the boundary. In this experiment, instead of allowing the dye to issue

in a sheet, the dye was seeped through small holes, creating dye lines
in the flow. Figure 12 shows these dye lines as they are being in- |
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Figure 12. Fluorescent dye streaks visualization of a turbulent spot. The dye lines

undergo large-amplitude oscillations before being overtaken by the spot; R Z 5x 105 .
(Frem Gad-el-Hak et al., 1981)

4",.

gested into the spot. As the spot overtook the dye lines, large oscil-

lations were observed along each dye line. These oscillations are per-
- haps similar to the wavy structures observed by Perry et al. (1981)

near the perimeter of the incipient spot (see Section 2). In the cin-

films from which Figure 12 was taken, these disturbances often appeared

to be wave-like, with streamwise length scale slightly larger than a
laminar boundary layer thickness. Points of constant phase moved down-

• "istream at approximately O.4U to 0.5U , and hence were rapidly
0 0L

overtaken and ingested by the spot. Similar fluctuations have been

observed by Falco (1977) and Cantwell et al. (1978).
A possibly similar phenomena was observed with the light sheet ori-

_, ented in an x-y plane. Using close-up photographs of the overhang

region of the spot, the following interesting feature was found to

consistently occur in this region. The overhang region would first be

convected above previously laminar flow. At first the laminar flow

near the wall would appear undisturbed. However, shortly after the

% appearance of the overhang, discrete lumps of dye form, indicative of

vertical motion. (See the sketch in Figure 13). These lumps have a

*wavelength* of approximately one or two laminar boundary layer thick-
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#Flow La,-rgescale Figure 13. Events preceding the break-up
outer structure of wall dye; (a) Overhang moving over wallSpot hea dye layer; (b) Wall dye is separated into

lumps; (c) The lumps lift up. (From Gad-
el Hak et al., 1981)

(a) \ Wall dye

(0)

(c) '' .

nesses. Subsequently the dye lumps explode into turbulence, becoming
*. a part of the spot, apparently without any entrainment occurring.

This motion is consistent with that of Figure 12, and, as mentioned,
with the observations and model of Perry et al. (1981). From these
visualizations it appears that part of the spot is convected over
laminar flow near the wall, inducing the laminar flow to break down

into turbulence.
A better idea of the growth of the spot normal to the boundary can be
obtained by further examining x-y cross-sectional views of the spot.

* Figure 14 presents an x-y plane at z=6 (approximately 106L) obtained
with the aye layer method (Gad-el-Hak et al., 1981). Preexisting dye
sheets are illuminated by a laser light sheet allowing a close examina-
tion of the method of entrainment as well as the motion in the irro-

tational region above the spot. The general shape of the spot obtained
.*' was consistent with the ensemble averaged results of Wygnanski et al. L

,(1976) and Cantwell et al. (1978). However no single dominant eddy
was observed. Instead, the spot appeared to be composed of numerous

eddies having length scales of typically a turbulent boundary layer
thickness. The eddies grew and moved away from the plate, providing
the growth of the spot normal to the boundary layer. The eddies

*" seemed to move somewhat independently of each other, and, in fact, the

interior of the spot closely resembled a turbulent boundary layer.
Most of the growth and entrainment appeared to occur on the upstream
(i.e., rear) of the spot, consistent with the observations discussed
above, and also consistent with the ensemble-averaged results of
Cantwell et al. (1978). The entrainment appeared to occur by
'gulping', whereby large parcels of irrotational fluid are ingested .0
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Fig. 15

Figure 14. Cross-sectional view in the x-y plane of the turbulent spot; z =106L;

R=5 x 105. (From Gad-el-Hak et al., 1981)

Figure 15. Spanwise section of the spot in the y-z plane; Flow is out of the plane

of the photograph; RX 5x105 . (From Gad-el-Hak et al., 1981)

into the boundary layer between two eddy structures. Similar con-

clusions have been drawn by Falco (1977) for entrainment in a fully-
developed turbulent boundary layer at moderate Reynolds numbers. Some

of the motion in the irrotational region in the vicinity of the spot ",
can be inferred from the photograph in Figure 14. The outermost dye

layer, located at approximately two turbulent boundary layer thick-
nesses from the boundary, is observed to have been displaced about
20 per cent as the spot passes below. This is consistent with the

strong correlation in the normal velocity component extending into the

potential region which was reported by Blackwelder and Kovasznay

(1972) in a turbulent boundary layer. Downstream of the nose of the
spot, dye lines at y=6t are displaced downward, consistent with

the ensemble-averaged results of Wygnanski et al. (1976).

A y-z cross-section of a spot is shown in Figure 15, taken from
Gad-el-Hak et al. (1981). Again the spot appears to be more like a

collection of random eddies. Also, from the displacement of dye lines

in the irrotational region, it can be concluded that, above the spot,

there is motion away from the boundary, while near the edges there is

motion towards the boundary.

From conducting experiments using a variety of different visualization

methods and from examining different aspects of the flow fields in
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turbulent spots, Gad-el-Hak et al. (1981) could find no strong evidence

that the flows were dominated by one or two prominent vortical struc-

tures. To the contrary, the dynamics within the spot appeared to be

controlled by many individual eddies, similar to those within a

turbulent boundary layer.

The view that a turbulent spot consists of many vorticies is shared by

Matsui (1980), who used hydrogen bubble techniques to visualize the

spots in a water tunnel. Matsui suggested rather diverse possibilities

for the configuration of vortex-like substructures that exist within .

the spot. He hypothesized that the generation of new vortices in the

rear of a turbulent spot caused the trailing edge propagation speed to

be lower than that of the leading edge. This velocity difference

caused the longitudinal growth of the spot, while the generation and

outward shift of new vortices on both sides of the spot caused its

transverse growth.

Based on the r .... ualization resuls, Wygnanski (1981) has

concurred with the present authors' view that the treatmen i -.

turbulent spot as a single entity (large horseshoe vortex) is an
over-simplification. He states that the entrainment calculated by
considering the average velocity in a spot gives only an overall

integral quantity from which very little can be inferred about the
kinematics of the process.
Wygnanski, Zilberman & Haritonidis (1982) provided additional data on

the rate of growth of a turbulent spot. They also conclude that a

similarity approach based on ensemble-averaged data is severely
limited. It might be used to predict the overall scales and flow

field, but much more sophisticated data-processing techniques are

required to describe the structure of the spot. Itsweire (1983) and

Itsweire & Van Atta (1983) attempted such a data-processing method.

They developed a discriminative averaging technique to construct a
* statistically most probableO spot with sufficient resolution to in-

Sclude some of the largest substructures detected in visual studies.
They suggested the existence of considerable phase coherence between

the structure of the most probable spot and vortical motions on the

next smaller scale.

The picture of the spot that emerges from these various visualization
and probe measurement studies is that (i) the interior of the spot is "

very similar to a turbulent boundary layer; (ii) that no large-scale

predominate vortical structures are observed; (iii) that the growth of

the spot normal to the boundary appears to be by turbulent entrainment,
as in a turbulent boundary layer; and (iv) the growth of the spot lat-

erally is due to some mechanism other than entrainment.
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Gad-el-Hak et al. (1981) performed a series of visualization experi-

ments to establish whether the lateral growth was by entrainment, or

some other mechanism. The process of entrainment, as first studied in

detail by Corrsin & Kistler (1955), has the following characteristics:

(1) The turbulent region is separated from the nonturbulent region

by a distinct interface.
(2) The process of entrainment must occur by direct contact, i.e.,

by the local diffusion of vorticity, since the turbulent

region is highly vortical and the nonturbulent region is

irrotational.

(3) If a passive scalar is introduced into an entire turbulent

region, then because of turbulent mixing it will also mark new

-" fluid acquired by entrainment. .j,.

Gad-el-Hak et al. (1981) used this latter property of entrainment to

determine whether the lateral growth of the spot was due to entrain-

ment. In one experiment, a blue dye was added to the fluid in the

solenoid valve used to generate the initial patch of turbulence, and

hence mark the early spot. The same spot was also observed using a

red dye seeped from the slot upstream of the spot initiation location.

The latter dye marked the entire spot. As the spot grew, the region

marked with the blue dye grew very little, while the spot was rapidly

growing. This indicated clearly that fluid was being added to the

spot by a process other that entrainment. In another experiment, the

dye slot was partitioned into four different regions, and different .

color dyes were issued from each slot. The lateral diffusion of the

dye was observed to be much slower than the lateral growth of the

spot. Since entrainment proceeds at a rate similar to turbulent

diffusion, this again indicated the presence of an alternative growth .

process. In order to investigate this mechanism further, Gad-el-Hak

et al. (1981) also carried out studies of the turbulent wake of a &A

roughness element placed in a laminar boundary layer. This work is

discussed in the next section.

From the ensemble-averaged data of Cantwell et al. (1978), if h

denotes a characteristic length scale of the spot in the direction
normal to the wall, then the growth rate of h in the downstream

direction is approximately 0.013. On the other hand, the growth rate

of the spot in the lateral diection can be estimated from the maximum

angle subtended by the spot as measured from its virtual origin. This

growth rate is found to be approximately 0.18, an order of magnitude "Soo

larger than the growth rate in the normal direction. Thus it is clear

'-



I
that the spot does not grow laterally by entrainment, but by some other

mechanism that provides much more rapid growth. From the visualization

studies, this mechanism appears to be a breakdown of the laminar but

unstable flow in the vicinity of the spot (as suggested by Corrsin &

Kistler, 1955), and has thus been termed *Growth by Destabilization'

by Gad-el-Hak et al. (1981).

5. Relationship to Other Flows

Turbulent spots in laminar boundary layers are dynamically similar to

a number of other flows. Exploring these similarities can help in the

understanding of the dynamics of turbulent spots; also, conclusions

about turbulent spots have ramifications with regard to other flows.
Perhaps the flow most similar to a turbulent spot in a laminar boundary

layer is a turbulent spot in an otherwise laminar plane channel flow.
Carlson, Widnall & Peeters (1982) have carried out experiments in a .. :

channel flow at a Reynolds number of about 1000. The spots were

generated artificially in an otherwise laminar flow, and were visual-

*" ized using small, disc-shaped mica particles. This visualization

approach, which is similar to that of Cantwell et al. (1978) discussed

" in the previous section, allows the viewing of the instantaneous flow

field. The laminar channel flow has significantly different stability

characteristics than a laminar boundary layer. Furthermore the

Reynolds number is constant in the flow direction, while the Reynolds
number in a laminar boundary layer grows continually in the flow

direction.

The spots in the channel flow quickly filled the depth of the channel,

so that growth normal to the channel boundaries became unimportant;

only the lateral spread was of significance in determining the spot
shape. This shape was more oval than the arrowhead shape observed in

the boundary layer case. The spot subtended a half-angle of about 80,

slightly smaller than the corresponding angle in a laminar boundary

layer. The front of the spot moved at about 2/3 of the centerline
speed, while the rear interface moved at about 1/3 of this speed.

These values are both somewhat less than corresponding values for a

turbulent spot in a laminar boundary layer. Interestingly, after the

spot had grown to about 35 times the channel depth, it split into two
spots, a phenomenon not observed in a laminar boundary layer.

The lateral growth of the spot appeared to be due to the instability
of the flow, similar to the boundary layer case. It was found that
the spot died out if the flow speed was below the stability limit, a

phenomenon which also was observed by the present authors for a spot
in a laminar boundary layer. Strong oblique waves were found both

14 . . . ! .7 -1



ahead of and to the rear of the spot. The waves at the front of the
spot were observed to break down into turbulence, thus increasing the
size of the spot.

Other flows closely related to turbulent spots are turbulent slugs and

puffs observed in otherwise laminar pipe flows. Wygnanski & Champagne

(1973) studied pipe flow at Reynolds numbers in the range of onset to

turbulence. They observed intermittant regions of turbulence in

otherwise laminar flow. These turbulent regions, termed.turbulent
slugs, were found to naturally occur for Re > 5,000, but could be
initiated at Re > 3,200 by introducing disturbances at the inlet.

The slugs occupied the entire cross-section of the pipe, and grew
rapidly as they proceeded downstream. The leading and trailing fronts
of the slugs were very sharp and well-defined, while the interior of
the slugs appeared identical to fully-developed, turbulent pipe flow.

It is the present authors' opinion that these slugs grow in the flow
direction in much the same manner as do turbulent spots, i.e., by
instabilities in the flow and not solely by entrainment. Near the
leading and trailing fronts of the slug, velocity profiles develop in-
flections, hinting that instabilities are important. Furthermore, the
slugs cannot be maintained below a critical Reynolds number. And
finally, Wygnanski and Champagne found that, in addition to turbulent
diffusion, pressure diffusion was necessary to explain the propagation

* of the front. The pressure diffusion could be related to pressure
fluctuations in the unstable laminar flow induced by turbulence in the
nearby slug, causing the flow to break down into turbulence, and thus
propagate the front.

For Reynolds numbers in the range of 2,000 to 3,200, Wygnanski &
* Champagne (1973) and also Wygnanski et al. (1975) found that large

disturbances still produce a turbulent region, although one that is
less vigorous than that for a slug. These regions, termed turbulent
puffs, do not have well-defined leading and trailing interfaces, and

are convected at a speed lower than the mean speed. Thus at the front
of the puff it may not be growing, but possibly relaminarizing. Puffs,
which have sometimes been observed to decay, have also been observed

. to split, reminiscent of spot-splitting in a channel flow.
Another phenomenon closely related to a turbulent spot is the turbu-
lent wake of a roughness element placed in otherwise laminar boundary
layer. When laminar boundary layers have speeds above the laminar
stability limit, turbulent, V-shaped wedges are often observed, for

4! example, issuing from small imperfections in the surface of airfoils,
" or from other fixed obstructions in the flow. Charters (1943) was the

first to report the observation of these turbulent wedges. He found, |
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while studying bounuary layer transition on flat and curved surfaces,

that turbulent, V-shaped wedges occurred behind local fixed distur-

bances in the flow. These wedges spread laterally at an approximately

constant rate, and, once generated, appeared to be independent of the

generating source. Because these turbulent regions contaminated his

laminar boundary layer by spreading transversely to the boundary,

0 Charters referred to this phenomenon as transition by transverse

contamination. He found that the wedges grew at a half-angle of

approximately 9.50, and suggested that vortical fluctuations in the

wedge contaminated adjacent regions, causing the wedges to spread

transversely.
Schubauer & Klebanoff (1956), as part of a stuuy of turbulent spots,

investigated the turbulent wake of obstructions placed on the boundary
surface. They found that at lower speeds the wakes possessed a tur-

bulent core subtending a half-angle of about 6.40, with a highly
intermittant region extending out to 10.60. For higher speeds or

larger obstacles, the fully-developed core extended out to 10.60. In

"" the intermittant regions, the turbulence would arrive with an abrupt

increase in velocity, and end with a gradual decrease, a behavior very

similar to the signals they had measured as a spot passed. Within the

turbulent core they found that the mean profiles were identical to

those in a fully-turbulent boundary layer. Noting the similiarities

between turbulent spots and turbulent wedges, they suggested that a

turbulent wedge was just a succession of turbulent spots.
In addition to studying turbulent spots, Gad-el-Hak et al. (1981) also

examined the wakes of roughness elements placed in laminar boundary

layers. In one experiment a small roughness element, coated with a

red dye, was placed in an otherwise laminar boundary layer. The wake
of the rougness element was easily visualized from the dye, and found

to subtend a half-angle of approximately 20. The total turbulent

region behind the roughness element was observed under indentical

conaitions by seeping blue dye from a spanwise slot upstream of the

roughness element. The turbulent region extended significantly beyond
the roughness wake, subtending a half-angle of approximately 60. Since
the growth of the wake region (red dye) is due to turbulent diffusion,

which proceeds at a rate closely related to that of turbulent entrain-

ment, this demonstrates that some other mechanism is causing the rapid

lateral growth in the turbulent (blue dye) region. When experiments
were carried out at towing speeds below the critical speed predicted "-

by linear stability theory, the turbulent region could not be sus-

tained. This indicated that the additional mechanism was an insta-

bility process, probably one in which the turbulence eddies near the

inside boundaries of the wedge (or spot)induce strong disturbances in

7 ... - '---
"-"c -".; .' ,-" ." J ' ' - '' ' ",. " , " " "J ' ."-. .' 1% " ' "- . -' .



the adjacent unstable laminar boundary layer, causing the flow to

break down into turbulence and become part of the wedge.

In the films taken frome these wake experiments, Gad-el-Hak et al.

noted that structures which appeared similar to the wing tips of spots

would occasionally pass by. These structures subtended a half-angle

of approximately 100, and were probably the same intermittant pheno-

menon observed by Schubauer & Klebanoff (1956) with their probe

measurements.

In order to obtain more quantitative information about the wake of

roughness elements, Gad-el-Hak et al. (1981) studied the wake of a

heated roughness element placed in a wind tunnel boundary layer. Both

the temperature wake (corresponding to the red-dye wake) and the

velocity wake (corresponding to the blue-dye wake) were explored by

traversing a thermometer and a hot-wire probe in the transverse, z,

direction. Transverse profiles of the mean and fluctuating tempera-

ture and velocity fields were obtained for a range of downstream

locations. The structures of the temperature and velocity wakes were

significantly different, the temperature wake being much narrower than

the velocity wake. Figure 16 gives the result for the widths of the

fluctuating temperature and velocity wakes taken from these experi-

ments. The wake width was defined as the location at which the

profile had decreased to one-half its maximum value. The thermal wake I%

spread at a rate having a half-angle of about 1.30, while the velocity

wake spread at a half-angle of approximately 80, consistent with the

visualization results. 
MA-

The sequence of events associated with a turbulent spot initiation

(Figure 3) is similar to the transition route of a decelerating
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Figurc 16. Growth of the thermal wake and the turbulent wedge.
(From Gad-el-Hak et al., 1981)
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laminar boundary layer as described by Gad-el-Hak, Davis, McMurray &

Orszag (1984). Their Figure 4 depicts a laminar boundary layer that

becomes unstable to two-dimensional waves when decelerated. These
waves break down into three-dimensional patterns, hairpin vortices and

finally turbulent bursts when the vortices lift off the wall.
Liepmann, Brown & Nosenchuck (1982) observed a similar transition
process initiated by a dynamic-heating technique.

The above described transition events have strong resemblance to the

intermittent events that characterize fully-developed turbulent

boundary layers; namely the bursting cycle (Blackwelder & Kaplan,

1976). As discussed in the previous section, a common structure that

can be readily identified in both transitional and turbulent boundary

layers is the low-speed streak (Blackwelaer & Eckelmann, 1979). The

streaks' presence in a turbulent spot is evidenced in the schematic in
Figure 5c, and the dye photograph in Figure 8. Low-speed streaks are

low-momentum regions existing near the wall and are believed to be

caused by the pumping action of the counter-rotating streamwise
vortices that are known to exist in the wall region (Bakewell & Lumley,

1967). The origin of these vortices developing in a boundary layer is
presently unknown, with the exception of a boundary layer developing

on a concave wall where the generation mechanism has been identified
as a G~rtler instability (GSrtler, 1941). Previous attempts to esta-

blish a quantitative analogy between the low-speed streaks in
transitional and turbulent boundary layers have failed. However,
Blackwelder (1983) argues that the reason for the apparent lack of
success is the use of a boundary layer thickness as a length scale.

Blackwelder has shown that, when viscous scales are used to normalize
the length and other parameters, striking similarities do indeed exist
between transitional and turbulent eddy structures near the wall. "

6. Conclusions
A significant amount of information concerning turbulent spots has

been obtained since their discovery by Emmons in 1951. This informa-

tion, almost totally experimental, gives both the (ensemble) average

picture of the spot as well as details of the the underlying structure,
and has led to at least a qualitative understanding of the basic

dynamics of turbulent spots.
Most of the overall features of a turbulent spot are summarized in
Figure 17, taken from Gad-el-Hak et al. (1981). This figure presents

a qualitative sketch of an x-y cut through the spot. For dynamical

considerations it is useful to divide the flow field in and near the

spot into at least 5 different regions. It has been found that the
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Figure 17. Schematic view of an x-y cut through the turbulent spot.

(From Gad-el-Hak et al., 1981)

primary internal part of a spot (Region III in the Figure) is dynami-

cally very similar to a fully-developed turbulent boundary layer,

having the same mean velocity and turbulence intensity profiles, the

same growth rates away from the boundary, and internal structure that

visually appears the same. Even streaks of approximately the same

length have been observed, although no study has as yet compared ;.•.

bursts in the spot with those in a turbulent boundary layer. Thus,

our understanding of fully-developed turbulent boundary layers can

probably be carried over to understand the internal dynamics of the

spot.

The unique features of the spot occur at or near its boundaries.

Region I, the overhang region, originally was part of Region III until

it was convected over the laminar boundary layer. It appears to be

turbulent, although separated from the boundary, and hence from its i.

primary source of energy. Region I appears to induce diturbances in

Region II, the laminar boundary layer below and ahead of the spot,
causing the flow in this region to breakdown into turbulence and hence

become part of the spot. The method by which this breakdown occurs is

still not clear. Region IV appears to contain somewhat active turbu-
l . -fence, which was once part of Region III, but whose upper part has

been convected away due to shear. Finally, Region V is the *calmed"
region behind the spot, which also was once part of Region III, but

now mainly consists of longitudinal streaks along the boundary. An

important region which is not shown in this x-y cut is the region in

the vicinity of the wingtips (see, e.g., Figure 10). The dynamics in

this region govern the overall lateral spread (and hence maximum angle

subtended by the spot). There is apparently little or no overhang in

this region, and the spot appears to spread through instabilities in

the adjacent flow, perhaps as suggested by Matsui (1980) or Perry

et al. (1981). Again the dynamics of this process are not well

understood.

From ensemble-averaged measurements of the velocity field in the spot

(see, e.g., Figure 7), the spot appears to consist of two dominant

vortices which control the dynamics of the spot. Further experiments,

however, especially visualization experiments, show that this view of
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the spot may be misleading. These vortices are never observed in the
visualizations, and, although the vortices exist in the ensemble-
averaged sense, the fluctuating motions about this average appear to
be the controlling dynamic features.

To better understand and predict the behavior of spots, there is a

need for further experimental, numerical, and theoretical work.

Experimentally, there is a need for ingeneous experiments to eluci-

date the nature of the instability process(es) by which the spot grows

laterally. For example, is the breakdown due to the growth of

Tollmien-Schlictung waves, or is it a more catastrophic breakdown into

turbulence? The present authors think it is probably the latter.

Also, more understanding could be obtained by subjecting the spot to a
variety of different conditions, for example, favorable or adverse

pressure gradients, and accelerating or decelerating boundaries. The

present understanding implies certain specific responses; for example,

a favorable pressure gradient could stabilize the boundary layer and
thus inhibit the spot growth. Some work along these lines has been
carried out by Gaster (1967) and Wygnanski (1981). Numerical experi-

ments, e.g., Leonard (1981) and Orszag (private communication), also
have the potential for shedding considerable light on the underlying
mechanisms.

There has been very little theoretical work on the spot. Early
stability theories, for example, Criminale and Kovasznay (1962) and .

Gaster (1975), have led to accurate prediction of the linear stage of

the incipient spot. But at the present there is no predictive theory
for the fully-developed spot. For example, there is no theory which

correctly predicts even the proper angle of spread. Such a theory

probably may have to inherently be nonlinear, and may have to include
the pressure disturbances induced in the laminar flow by adjacent
turbulent flow in the spot, and the subsequent nonlinear breakdown of
this laminar flow.
Present turbulence closure models (e.g., k-c models) probably cannot
handle turbulent spots, because the physics of the growth by destabil-

ization is not included in the models. However, recent modifications

of these models to take into account the interface between turbulent
and nonturbulent flows using the intermittancy function (e.g., Dopazo &
O'Brien, 1979; Kollman, 1984) might be able to accurately treat the
spot dynamics, although clearly a number of ad hoc assumptions would

still be required.
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Spectral and Statistical Characteristics of Breaking Waves

O.M. Phillips

Department of Earth and Planetary Sciences, The Johns Hopkins University
Baltimore, MD 21218, USA

In the equilibrium range of wind-generated waves, it is postu-

lated that the processes of energy (or action) input from the wind,

loss by wave breaking and net transfer by non-linear resonant wave 5

interactions are of comparable importance throughout the range. Con-

sideration of the action spectral density balance then indicates that

the wave-number spectrum in this range is proportional to (cos e )1A

u, 9-1,0 k-7/2, where 0 is the angle between the wind and the wave-number

k, and the frequency spectrum is of the form found empirically by Toba

(1973), namely u~g -4. These forms have also been derived by

Kitaigorodskii (1983) though on a quite different physical basis. The

spectral rate of energy loss by wave breaking is found to be propor- li.

tional to (cos6)3/2 u,3 k-2 and the spectral rate of momentum loss

from the waves to (cos 0)5/2 g-I/ u,3 k-3/2. As the wave field develops

with increasing fetch or duration, the total rate of energy input to m*

the water turbulence by wave breaking increases as Pau* 3 ln(kl/ko)

where ki and ko are the upper and lower wave-number limits to the

range; the total momentum flux increases also but asymptotes to a

' fixed fraction of Pau* 2 . The various constants of proportionality

are found in terms of Toba's constant and a coefficient expressing the

rate of energy input from wind to waves.

The statistical distribution of breaking fronts is also con-

sidered. The average total length of breaking fronts per unit area

with speeds of advance between co and cl is proportional to .4

U3(Cr-); because of the strong dependence on c, easily visible V

whitecaps for which c is above a threshold value cr constitute only a

small fraction of the total breaking events. The total length of white-

cap fronts per unit area is proportional to u,3 gc -5 when the speed

of the fastest breaking fronts is significantly larger than cr; the

number of actively breaking whitecaps passing a given point per unit

time to u,3 g c -4 and the whitecap coverage to u,3 gTc -4 , where T

is the average duration of a bubble patch.



1. Introduction

The breaking of waves is a process that is ubiquitous over

two-thirds of the surface of the globe. It is clearly responsible for

part of the transfer of mechanical energy and of momentum from the

atmosphere to ocean currents and turbulence, for the enhancement of

heat transfer and especially the exchange of gases between the atmos-

phere and the ocean as well as augmenting substantially but locally

the drag of the air on the water itself (Banner and Melville, 1976).

In the past few years a great deal of attention has been paid

to the dynamics of breaking and the search for criteria under which

waves might be expected to break. The remarkable and pioneering

theory and numerical experiments of Longuet-Higgins and Cokelet (1976)

have traced the evolution of finite amplitude irrotational waves on

deep water, either as a result of their intrinsic instabilities or of

impulsive forcing to the point of wave breaking and just beyond.

Less fundamental have been attempts to find a single thre:hold variable

such as local vertical acceleration, or combination of s,,ch variables,

which determine the probability of breaking of an individual wave crest.

This concept lay behind the original idea that led to the simple

g2e-5 saturation spectrum proposed a number of years ago. The idea .-

has been taken a great deal further in other directions with

interesting success in a series of three papers in 1983 written by

Snyder, Kennedy and Smith in various combinations. It does remain

difficult, though, to associate any single local variable with the

examples of breaking calculated by Longuet-Higgins and Cokelet; it

seems that the recent time history of the surface configuration is

more pertinent than a single local threshold variable.

In this paper, a rather different approach is taken, more in %*

the spirit of Hasselmann (1974) in which the detailed configuration at

the point of incipient breaking is ignored - it disappears anyway as

soon as the wave breaks - while concentrating on the statistical con-

sequences of the ensemble of breaking events at various points on the

sea surface. The initial goal is to use simple dynamical reasoning to

_ provide as reliable an estimate as possible for the average rate of

spectral energy loss resulting from breaking; in turn, this leads to

the form of the high frequency spectrum of gravity waves that was in-

ferred empirically by Toba (1973) and also to a series of simple

expressions for quantities such as the average length of breaking

lines per unit area at any instant and the fraction of surface area

turned over per unit time.

157 ,



2. The Statistical Equilibrium of Short Waves

The spectrum of a random distribution of surface waves can be

specified by [ . _.______

where [ represents the local surface displacement and the integral is

over the entire separation (r) plane. The dynamics of the field is,

however, more conveniently described (particularly when wave-current .

interactions are involved) by the balance of action spectral density -,NC~j- .(2.1)

where a- is the intrinsic frequency and the water density is divided out

throughout. Following energy paths (see, for example, Phillips, 1980),

. - y).vN -C,*. YI)*- S, - D (2.2)

where C is the local group velocity. The various processes that

* modify the action spectral density following a wave group are repre-

sented on the right. T(k) represents the spectral flux of action

resulting from resonant wave-wave interactions. These exchanges are

conservative for gravity waves and the integral of this term over all

wave-numbers vanishes. The rate of spectral input of wave action from

the wind is expressed schematically by the term Sw and 0 represents '

the rate of loss by wave breaking and possibly the formation of para- .

sitic capillaries at large gravity wave-numbers.

For those components at wave-numbers large compared with that

of the spectral peak, in a well-developed wave field under the con-

tinued action of the wind, the time scales of their growth are long d

compared with the internal time scales involved in wave-wave interac-

tions, action input from the wind and loss by breaking, so that for

these components the spectral balance reduces to '.

In this equilibrium range, the detailed functional forms of each of

these terms would be expected to depend on the nature of the spectrum

N(k) in this range and it is of interest to enquire what spectral

characteristics are associated with the possible balances among the

three terms of (2.3).

The spectral re-distribution of wave action has been the sub-

ject of pioneering investigations by Hasselmann (1962, 1968) and V

others; it can be represented as a "collision Integral" over sets of '., .

four resonantly interacting gravity waves:

• , ,,, ".,' :: ,' :',,-. ,., ap"r'',_, .", ,,P,). , •",",". ., ,,. " '.' _," ".' ,.,, , .."..,.'., ,.',..,''', , ,. ... * .. .• .. ;."'"'.-
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where the coupling coefficient Q is a complicated homogeneous function

of the wave numbers k,..., k3 and is of order k3 and C represents

the Dirac delta function. Later work by Fox (1976) and Sell and
Hasselmann (1972) suggests that the interactions are primarily local
in the wave-number plane, so that the net action transfer to a given

wave-number interval is determined primarily by the action spectral "
density in this vicinity. Near the spectral peak, of course, the flux
to neighboring wave-numbers is dominated by the peak itself, but in
the equilibrium range, the net flux to or from a wave-number band
should scale with the local value of N, i.e. N(k). Consequently,

since (2.4) is cubic in N and since Q2? k6, the net spectral flux '

divergence scales as

- Vk-T() I I N Ik 4/ - N(-) _ 25)

as given by Kitaigorodskii (1983). This can be expressed equivalently
in terms of the dimensior,less function, the "degree of saturation"

B(Q) *' l

defined by the author (1984),in terms of which (2.5) becomes

- 7 , - ,T (2.6)e3

The rate of action (or energy) input from the wind has been

the subject of many theoretical and experimental investigations over

the past twenty years which have, If nothing else, demonstrated the
complexity and variety of the detailed processes Involved. In order
to give a simple expression for Sw in (2.3) the best guide seems to be

provided by the analysis of careful experiments interpreted in the :-'

light of only very general theoretical considerations. Plant (1982)

suggests from a survey of such measurements that

d 0-04 Cos a- (AirW/c) tN(#) (2.7)
where is the angle between the wave-number k and the wind, u* Is the ,.

friction velocity of the air flow over the water surface and c =
(g/k)l, the phase velocity of the component concerned. This form has
been suggested by others as well; Mltsuyasu and Honda (1984) give a

numerical coefficient of 0.05 and Gent and Taylor's (1976) calculation
gives approximately 0.07. The form of (2.7) might also be justified
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on general dynamical grounds. The action and energy fluxes from wind

to waves result from variations in surface stresses in phase with the

orbital velocities at the surface; with stress variations of order &.Qa

times the local wave slope, and orbital velocities also proportional

to the slope, the net transfer rate must vary as Pau*2 N(k). For

dimensional consistency, then Swoc(Pa/Pw)0(u*/c)2 N(k), which, apart

from the numerical constant and the directional factor (less certain

anyway) reduces to (2.7). In terms of the degree of saturation, this

becomes

.5= eos) -4 ) (2.8)

where m = 0.04, but may be rather larger.

The development of an expression for the rate of spectral

action dissipation is more tentative. The author has argued (1984)

that this will depend on the spectral level, represented by B (rather

than the wind stress directly) since the occurrence of local breaking

and the consequent energy loss is the result of a local excess of

energy or action, however this excess is produced. It may, for

example, arise from a local convergence in an underlying current which

increases the local degree of saturation and consequently the inten-

sity of breaking. In an active wind-generated wave field where wave-

current interactions are negligible, the degree of saturation may be

enhanced by the wind stress, but the extent to which wave breaking

occurs still has as its primary causative property, the degree of

saturation B. In the equilibrium range, B may be expected to vary

only slowly with wave-number magnitude k, so that in spite of the

localness in physical space of the dissipation process, the spectral

rate of dissipation of wave action at a given wave-number k in this

range may be considered to be a function of B at that wave-number:

"D(4) a I' 4 f(kJ). (2.9)

., In summary, then, we have three physical processes that are

pertinent to the equilibrium range in an active wind-generated sea,

which balance among themselves and which scale as follow:

Spectral flux divergence A&' 8)

Wind input 1 Cos 0 y"& (U. /c) * a() (2.10)

Dissipation ycf8~).

The form of the spectrum in this range depends upon the balances that
may exist among these processes, and several alternatives may be

visualized.
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Kitaigorodskll (1983) has proposed the existence of a

Kolmogoroff type of equilibrium range in wind-generated waves in which

the energy Input from the wind is assumed to occur primarily at the

energy-containing scales with dissipation at much larger scales. This

then postulates the existence of a range of wave-numbers over which

the spectral flux divergence, wind input and dissipation are all

negligible; the spectral energy flux Co is constant over this range

and the spectral form must be such as to accommodate this constant

flux. On similarity grounds he gives for the (directionally averaged)

energy spectrum
ifr

and for the frequency spectrum

s ( -~ . ( 2 . 1 2 )

Arguing further that Eo c (Pa/Pw)O 3 , where U is the mean wind speed, .

or, approximately that r'o oc u*3 , he obtains wave-number and frequency

spectra of the forms u*g-l/Zk- 7/2 and u*gv- 4 respectively for wave-

numbers and frequencies above those at which energy input from the

wind occurs and below those for which dissipation is regarded as

important.

The principal conceptual difficulty with Kltaigorodskii's

argument Is the need to postulate that the energy input from the wind

is concentrated at wave-numbers close to those of the spectral peak.

To be sure, the air flow over the dominant waves may modify the rate

of energy input to smaller waves superimposed on the longer ones, but

it is difficult to see why it should be suppressed entirely. Indeed,

according to (2.7), the time scale for wind energy input is (for e-.o)

N M S(cfu.' . ' 2

* which decreases rapidly as the frequency increases. Yet very careful

measurements of the frequency spectra of wind-generated waves by Toba

(1973) and more recently by Forristall (1981), Kahma (1981) and

Donelan et al.(1982) indicate strongly that over a considerable range

of frequencies higher than that of the spectral peak, the spectrum is

much better represented as gu*ar- 4 than as the g2 (7-5 saturation form

proposed in 1958 by the author on much simpler dimensional grounds.

It seems that the matter demands re-consideration -- twenty-five years

is a pretty fair lifetime for a simple idea.
The basic point of this paper is to indicate how an equill. -

brium spectrum of the Toba type can be derived from a very different

M. ,
%6. .'%-



assumption about the dynamical balances in the equilibrium range and,

as a bi-product, to infer a number of simple properties concerning the

statistics of the breaking events themselves. In contrast to the

hypothesis made by Kitaigorodskii, let us suppose that in the

equilibrium range of an active wind-generated sea, all of the three

processes represented in (2.10), namely the spectral flux divergence

resulting from wave-wave interactions, wind input and dissipation by

wave breaking, are comparable throughout the range. Under this

assumption -'2

aCk M C,e(A- )B(k) -C 1(8(#)) (2.12)

whence it follows immediately that

- ,'3 (e° a) (41.u1c), (2.13)

and
. (8 " a8 (.¢) ,(2.14)

whereA and a are numerical constants. (Note that, from the definition,

B(k) = B(-k); in (2.13) -FT/2 < V< Mf12).

This then leads to a wave-number spectrum in the equilibrium range

-{A) A k tk) .4 (cae) (*./C) A",
a A (cso) 4  ° a" A (2.15)

similar to that given by Kitaigorodskii on a quite different basis.

The freqency spectrum can be found from (2.15), although care must be

taken to restrict the range of frequencies to those below which the

advection by the dominant waves (and the consequent Doppler shifting)

becomes significant. The orbital speed of the dominant waves is

approximately 2('acr. , where Wo is the frequency at the

spectral peak, so that Doppler shifting becomes significant for com-

ponents whose intrinsic phase velocity g/ao is not large compared to r

this. Accordingly, the frequency spectrum

2Iqd 2

3 o - 4- /a(")"',, , (2.16)

where - 41 W (Cosa) dG .ip . This is the form found empiri-

cally by Toba (1973) from wind tunnel data and confirmed in field

observations by Kawal, Okada and Toba (1977), Donelan et al. (1982)

and others. The constant of proportionality measured by Toba in a

wind-tunnel was approximately 0.02 and Donelan et al.'s field measure- %V

ments are consistent with this, although Kawal, Okada and Toba's later
% . ..6.



field work gives a value of 0.06 * 0.01. Kawai et al. give some

explanation for the difference between this result and Toba's earlier

estimate, though the reasons for the discrepancies may still not be

well understood.

The expressions (2.13) and (2.14) allow us to estimate the

spectral rates of dissipation of wave action, wave energy and wave

momentum in the wind direction which are, respectively,
DP.) - 4f)(s) •

=a/I (Coss) 4 ?k" (-/c;
.. ;, / a (2.17)

-3

= ur a2-/ c ek:,) 4 . (2.18)

and tk) - (etrk)/c)I C aa , . (2.19)

In the absence nf more complete observational verification, not too

much significance should be ascribed to the directional factors given

in these expressions, but it is interesting to note that the direc-

tional distribution of the equilibrium range energy density that they

indicate is quite broad.

The total fluxes of energy and momentum from'the wind to the

sea occur in three separate pathways: (a) directly by the mean shear

stress on the water surface, (b) from wind to waves, resulting in wave
growth and radiation from the generating area and (c) from wind to the

waves of the equilibrium range, from which it Is lost locally from the

waves by breaking. The last of these can now be estimated from (2.18)

and (2.19). If ko represents the lowest wave-number associated with

active wave breaking (which may be coincident with that of the

spectral peak, but may be somewhat higher) and ki is the upper limit

to this range, then the total rate of energy loss from the waves by

breaking, or, equivalently, the rate of energy input to the surface

layer turbulence in this way is
'Vt. k,/ / z ft'9dd

-%, k.

3.42 3'44 k ( / ) (2.20) "

in which the directionality factor in (2.18) is taken at face value.

This quantity is more usually expressed in terms of the air density;

restoring the density factors we have

• C. * (a.-Z0ip .1. ( h k1 /k.) (2.21)

The total momentum flux to the surface layer by wave breaking is likewise

• 63 .-163



--~~~~~ ~~~ V Ae/ )•P k% '. (2.22)i

According to Banner and Phillips (1974), freely travelling gravity

waves for which c < u* (or k > g/u*2) are strongly suppressed by the

wind drift induced by the direct shear stress at the water surface; if

k g/u*2 >> ko, then from (2.22),

which must, of course, be less than Pau* 2 .

Accordingly, as a wave field develops from, say, an initial

state of rest, the momentum flux to the surface layer by wave

breaking, initially zero, increases as the equilibrium range covers a

wider and wider interval of wave-numbers, approaching asymptotically a

fixed fraction of the total wind stress. The energy flux to the tur-

bulence of the surface layer by wave breaking continues to increase,

albeit logarithmically. With k g/u* 2 and ko = g/co 2

4 .(3-42-A3 o~Io)L'c) u3  (2.24)
(.2 I4 P.)J

7)

and if the fetch and duration of the field are sufficient to generate

dominant waves moving at the wind speed, .

-(.420 ep /e.j.Cb ') (2.25)

where CD is the drag coefficient.

3. Constraints on the Constants of Proportionality

Among the interesting consequences of the analysis of the pre-

vious section are the relations it provides among various numerical

coefficients that have been inferred from independent sets of measure-

ments, though none to high precision. The quantity m of (2.8)

expressing the rate of energy input from the wind is about 0.04 but

may be rather larger; Toba's constant *C of (2.16) specifying the

Sspectral level of the frequency spectrum in the equilibrium range may

be bracketed by the values0.02 and 0.06 found in different experi-

ments. The constant involved in the wave-number spectrum in the

saturation range has not yet been measured directly, but the (cos'*)/2

directionality factor gives o = 9.36/6 ; different but reasonable

directional distributions may give of up to fifty per cent or so in

the coefficient. One firm constraint that we have from (2.23) is that

o r 0 .4 /. 1 o (3 .1)
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Now, in the action spectral density balance (2.12), f(B) cer-

tainly represents a loss and the wind input a gain; the calculations

of Sell and Hasselmann (1972), although not too reliable at these

large wave-numbers, indicate that the net spectral flux also repre-

sents a gain. Consequently, the rate of dissipation aB3 must be

qreater than or equal to the rate of wind input, so that

0 m 0 04 (3.2)

If o.= 0.02 then A= 2 x 10-3 and a43 > 8 x 10-5, comfortably satis-

fying (3.1) and suggesting that fifty per cent or more of the total

wind stress is communicated to the surface layer by wave breaking. On

the other hand, if o = 0.06, then /3= 7 x 10-3 and a,3 > 2.8 x 10-4,

which is inconsistent with (3.1). We conclude therefore that either a

value of 0.06 for Toba's constant, or a value of 0.04 for the wind-

wave coupling coefficient (or both) are too high. Nevertheless, even

with somewhat smaller values one can also conclude that in a well-

developed wind-wave field, (1) a substantial fraction of the total

wind stress is communicated to the surface layer by wave breaking and

(2) the energy flux as turbulence to the surface layer by wave

breaking is a modest multiple (In CD-1 = 6.5) of Pau* 3 , and is cer-

tainly greater than the energy flux by the mean surface shear stress

acting on the wind-induced mean drift.

4. Some Statistical Characteristics of Breaking Events

As the wind blows over the water surface, at any instant the

fronts of the breaking waves define a distribution of isolated line or

arc segments. The scales of the breaking waves may cover a very wide

range, from very short gravity waves in which a converging, moving

stagnation point is marked by a group of capillary ripples, through

intermediate scales (15-30 cm or so) where the breaking is unsteady

but only a few bubbles are produced, to actual whitecaps in which the

breaking and the generation of turbulence is so vigorous that exten-

sive patches of foam are generated. There is clearly some association

of the breaking events with waves of different scales, but it is dif-

ficult to make the association in an unambiguous way if we consider

only the surface configuration at one given instant - the breaking

crest may indeed be a local maximum In the instantaneous surface con-

figuration, but there is no guarantee that a local wave length can be

defined clearly. It seems more satisfactory to use the velocity £ of
the breaking front as a measure of the scale of the breaking, since

this is a well defined quantity that might (conceptually at any rate)

be measured from movie images of the sea surface. In practice, this* *;-. ,-- ..



may be obtained relatively easily for those breaking events that

generate whitecaps, though it may be difficult to distinguish the many

smaller scale, fugitive occurrences of breaking that do not generate

discernable bubble trains but which still turn over the water surface

as they advance.

In any event, let us define a distribution _A(Q such that A(Ec,.
represents the average total length per unit surface area of breaking

fronts that have velocities in the range c to c + dc. The total

length of breaking front per unit area is then f.At,)dj.

What is the rate of energy loss from the waves to turbulence

per unit length of front in these breaking events? This question has .

been examined by Duncan (1981) in a series of laboratory experiments;

he showed that in an active breaker in deep water, the breaking zone

extends down the forward face of the wave over a fixed fraction of its

amplitude and that its shape is geometrically similar for waves of

different scales. Furthermore, he found that the breaking waves them-

selves are geometrically similar, so that the cross-sectional area of

the breaking zone is proportional to the square of the local wave-

length, or to (c2 /g)2. The weight of the breaking zone per unit

length of the breaking front provides a tangential force proportional

to c4 /g that acts on the oncoming stream whose speed is approximately

--' c. Consequently, the rate of energy loss per unit length of front is1-

y cS/g, where b is a numerical constant estimated by Duncan from

his experiments as approximately 0.06.

It is interesting to observe that the rate of turbulent energy

production by breaking increases very rapidly with the characteristic

speed of advance c of the breaking wave. A few large scale breaking .

events can produce as much energy loss from the wave field and input

to the turbulence as many small ones. Nevertheless, the charac-

teristic time scale for the duration of a breaking event, the ratio of

the wave energy in one wavelength to the rate of loss by breaking, is

proportional to the wave period, so that both large and small scale

breaking events are equally transient.

The average rate of energy loss per unit area by breakers with

speeds between c and c + dc is then

•A(p c/, ote. (4.1)

If we now identify the scales of waves that are breaking by the speeds

with which the fronts advance, then, for wave-numbers below those

seriously affected by Doppler shifting, k = g/c2 . An element of area

dk on the wave-number plane is related to the element dc on the velo-

city plane by

IV.,--,",
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u kdkd9 . - ( 2 t/c ) 2d9, &

(/ C 9 (4.2)

the negative sign being associated with the fact that integration to

large k corresponds to integration to smaller c. The distribution

(2.18) of energy loss by wave breaking per unit area dk can be re-

written in terms of the distribution with respect to velocity as

a 3/a c de
Vs€) 4 c /6Sc~e3' . '10.4 (4.3)

one factor of two arising from (4.2) and another from the equal

contributions to (2.18) for k and -k. Consequently, from (4.1) and

(4.3), dropping the negative sign,

- 4_ / 3 -

A- (soa ) A . (4.4)

This distribution of total length of breaking fronts on the wave-

number plane is very strongly weighted towards those with small speed

c or small scales - those fronts that produce whitecaps are evidently -

a very small fraction of the whole.

The total density of breaking fronts (length per unit area)

with speeds between co and cl is therefore/ -4
(C.( o,) ) - C at .

-,,i,.4 , rj., .
,-%

(4.5)

Now, if we consider only those breaking fronts that generate a trail

of bubbles, the breaking event then being identified as a whitecap,

then only those breaking zones with a rate of energy release rcS/g

exceeding some threshold St, say, will contribute. Consequently, the

lower limit of the integral is such that co = c... where ,.

If the longest waves that are breaking are shorter than those with

speed c., then virtually no whitecaps will be formed; if they are only

somewhat larger, c -5 << c -5 and (4.5) reduces to3 3
£ I3 ' 4  

4 7  ; (4.6)

'/ 3 (4.7)

*, ,* .'*
where a,#3  10-4 and r 0.06.
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On the other hand, if we consider all, breaking events, even

the very small scale ones that involve no air entrainment or bubbling

at all, then the total length of front per unit area is very much

larger, strongly dependent on the minimum scales that are breaking but

hardly at all on the density of the much rarer, but far more vigorous

whitecapping events. If the slowest moving waves that are breaking

have speeds co u*, then
o3

I -.3 /;(4.8)

which actually decreases with u*, since the increase in the speed of

the smallest breaking waves more than compensates for the increased

density of them (on the c-plane).

These results are clearly related to "whitecap coverage", the

fraction of surface area covered by bubbles. If bubbles, once gene-

rated, persist for an average time T, on the surface, then the average

length of a foam streak is cT and the whitecap coverage is

Now T is likely to depend on the temperature, humidity and various

surface properties not well understood; if we simply suppose it to be

constant then by a similar calculation

S(4.9)

where c. is the slowest speed of fronts capable of producing whitecaps,

provided, of course, that the fastest breaking waves are moving signi-

ficantly more rapidly than this. Although the accuracy of this result
:' is likely to be low (matching, indeed, the considerable scatter in

* reported measurements of the whitecap coverage), the wind speed depen-

dence that it exhibits, u*3 , is close to, but a little less than those

found empirically. Fitting observations to the form W ac U4, Monahan

(1971) found ?,- 3.4, Tang (1974) gives -- 3.2, Wu, (1979) 3.75 and

* ".Monahan and Muircheartaigh (1980), 3.52 or 3.41.

Finally, and somewhat more reliably, the fraction of sea sur-

face area turned over per unit time can be established. The area per

unit area swept up per unit time by breaking fronts, or the number of

active breaking fronts passing a given point per unit time is %.

; (4.10)

where co represents the speed of the slowest breaking fronts, or, if

we are concerned only with the number of whitecaps passing a given

point per unit time, co is the threshold front speed.
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It is unfortunately difficult to compare these results in

detail with the observations that have been made to date, largely

because of the sensitivity to co (which has not been measured) and the

observational difficulty of identifying precisely in a given experi-

ment the speed of the smallest breaking fronts that are detected or

counted. The lowest wind speed at which whitecaps occur is about 2.5

r/s, so that presumably the threshold phase speed for breaking is

somewhat smaller than this. Nonetheless, it is hoped that these re-

sults will stimulate further careful observations in which these

questions can be resolved. .-

It is a pleasure to acknowledge the support of the Fluid Dynamics

"" Branch of the Office of Naval Research under contract N00014-76-C-0184.
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How Do Liquid Drops Spread on Solids?

S. Rosenblat

Department of Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA

S.H. Davis

Department of Engineering Sciences and Applied Mathematics, Northwestern University
Evanston, IL 60201, USA

I. Introduction

The coating of a solid with a liquid and the displacement of oil in a porous medium

by water are processes that involve the motion of a contact line, the three-phase

line common to three materials. In the above illustrations the contact line

involves liquid, gas and solid and liquid, liquid and solid, respectively.

Because moving contact lines arise so frequently in practice, an understanding of

the associated mechanics is required. Underlying such an understanding is the

observation that the contact line does not consist of the same points at all

times. As shown in Figure 1, the contact line is the site of a splitting of the

fluid trajectories which gives rise to a singularity in the flow field. Dussan V.

and Davis (1974) show that the motion of the contact line together with the

imposition of the no-slip boundary condition necessarily makes this singularity one

of infinite force precluding a local study of moving contact-line mechanics. Thus, ..

local slip at the fluid-solid boundaries is posed and leads to tractable boundary-

value problems that have predictive capability.

The realization that effective slip occurs near the contact line allows one to solve
problems involving mutual displacement. One such prototype problem involves the

spreading of a liquid drop on a solid, the spreading occurring spontaneously upon

the placement of the drop on the solid. Such a model was posed by Greenspan (1978) r
, LIQUID-GAS INTERFACE .

GAS

LIQUID ,

U7L ONTACT LINE -.
CL.

Figure 1: Kinemetics of flow near a moving contact line (after Dussan V. and Davis,
1974). Coordinate system moves with the contact line at speed UCL.



for the creeping flow of a thin, Newtonian liquid on a smooth solid. In the present

paper, we shall reexamine this model in order to probe more deeply into the roles of

viscous and surface tension forces and the wetting characteristics of the solid. We

shall discuss two distinct contributions to the spreading characteristics, which we

call "capillary push" and "contact-line pull". Since many applications of spreading

studies involve the coating by polymer liquids, we shall extend our study to

viscoelastic liquids and identify which non-Newtonian properties dominate in the

spreading flows of interest.

2. Formulation

We consider a drop of viscous liquid on a smooth rigid plane. We use a cylindrical

polar coordinate system (r*,4*,z ) to describe axisymmetric drops in which the rigid
plane is located at z= 0, and the z axis points into the liquid. Since the drop

is axisymmetric, all quantities are independent of the azimuthal coordinate * ; body
forces are ignored.

Initial State

The initial shape of the drop is taken to have the form

z 1 =h6(r 0 r" < a. 1

with the edge condition

h6 (a) = 0(2)

The initial contact angle e0 is given by

dh~
tan e0  a0 ) (3) .

dr

and the volume is
a°

Vm  2. r% h/at (r:)d
a 0  (4

Drop Dynmcs :.

At time t > 0 we denote by a(t*) the radius of the drop. Thus we have the initial

condition
.' a*(O) - ao •(

We take the shape of the drop at time t to have the fom.

z h(rt) , 0 4 r < a (t) with (6)

h(a (t ),t 0 (7) g

The contact angle at time t* is denoted by e* e*(t*) and is given by
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tan e = r (a*,t*),t) . (8)
ar

Conservation of the volume of the drop over time gives the additional constraint

a *(t *) * *;

V' = 2 f r h (r*,t*)dr . (9)
0

The rate of change of the quantity a* at any instant t* is taken, on empirical

grounds, to depend on 8 , 4 f G(e*), which incorporates all the wetting properties

of the solid. Dussan V. (1981) discusses these issues in detail. For convenience

we use a linear law

d = (e -eA) (10)
dt

where i > 0 is an empirically determined constant, and where eA > 0; eA is the
advancing contact angle which corresponds to static equilibrium when the drop is on

the point of spreading.

Equations and Boundary Conditions

The motion is governed by the Navier-Stokes and continuity equations,

p(--,j+ v v_) -vp +v § (11)"
at

V v 0 (12) "

where p is the density, v1 = u*,0,w*) is the velocity vector, p* is the pressure
and a* is the extra-stress tensor. A constitutive relation between the stress and
the deformation-rate will be given below.

Th boundary conditions are as follows:
(i) The normal velocity component is zero on the rigid plane,

W=0onz* = 0'
on = 0 ; (13)

'il) As follows from Dussan V. and Davis (1974), the usual no-slip condition at

the rigid boundary is modified to avoid the appearance of a singularity at the
contact line. Following Greenspan (1978) we take the condition to be

(h'u 0)S1 on z = 0 (14)* (14)

where l0 is the zero-shear-rate viscosity, y is a slip length (distance from the
contact line over which slip takes place) and S13 represents the r z*-component of
the extra stress.
(iii) The kinematic condition at the free surface is

W ah + u ah on z h (r,t) . (15)
at ar 5
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(iv) The dynamic boundary condition at the free surface is

-[p n + o nn] = 2k* z* h (16)

where [p*] denotes the pressure difference across the interface, a is the surface
tension, n is the outward unit normal to the surface, and H' is the mean curvature

of the interface.

Rheology

A constitutive equation that is suitable for polymer solutions is the generalized

Maxwell model,

* * .,1** . * *

+ + w+ (V,) + a 0- + 1 ') pj (17)
at

where

S.V =vv +(vv) (18)

* = V v *T (19)

T is the relaxation time of the liquid and 1 is a number, which in practical .
situations can range between -1 and +1. (See, for example, Petrie (1979).) When -

8 = 0 the model, equation (17) reduces to the well-known corotational Maxwell model.
In steady unidirectional shear flow this model yields shear thinning and both first

and second normal stress differences, and yields stress relaxation in unsteady

simple shear. When 0 = 1, equation (17) reduces to the upper convected Maxwell

model. Here there is no shear thinning in simple shear, the viscosity remaining

constant at its zero-shear-rate value, but first and second normal stress

differences, as well as stress relaxation, are present.

3. Lubrication Approximation

We proceed on the basis of the assunption that the initial angle e0 is very smll.
This enables us to use the lubrication approximation, in which all quantities are

appropriately scaled, and then the equations and boundary conditions are expanded in

powers of 0O. The first-order problem is retained in the limit e0 * 0.

A dimensionless time t is defined by

3= e au (20)

and dimensionless coordinates are defined by

z /(aO 0 ) , r = . (21)
The dimensionless shape of the drop becomes h(r,z) where

h =h /(aoe O) . (22)

U . .- 9 .. .9.<¢
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The radius of the drop is a(t), given by

a(t) = a*(t*)/ao (23)

and the contact angle Is

e(t) = O*(tm)/O0 (24)

with the final equilibriumn (advancing) contact angle given by

OF = OA/ 0  • (25)

We also define a dimensionless volune by

vV/a6,e0 . (26)

Dimensionless velocity components (u,w) and pressure p are given byI

K= , W w*/(Keo) , P = p(aoeo/uo ) (27)

' Finally we have a dimensionless stress tensor S deflned by
= _(/ (28)

Initial State

In our non-dimensionalization the drop has unit radius initially, and the initial

contact angle e(O) is also unity.

The initial shape has the form -

z = h0 (r) , 0 4 r < 1 (29)

with end condition

ho(1) = . (30)

Using the approximation e0 + 0, we find the condition for the initial angle to be

dr (31)

We also have the volune condition

V = 2, rh0 (r)dr . (32)

Drop Dynamics

The shape of the drop at time t is

z = h(r,t) , 0 4 r < a(t) with (33)

h(a(t),t) = 0 . (34)

In the lubrication approximation the contact angle e (t) is given by ...

M -r(a(t),t).5
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The volume conservation condition (9) becomes

a~t)
V = 2- rh(r,t)dr . (36)

Equations (10) and (35) combine to give the following differential equation for the

edge dynamics of the drop:

da(t) C[hr(a(t),t) _ eF] where (37)

0  (38)

Equation (38) is subject to the initial conditions

a(0)=l . (39)

Here C is the effective capillary number for the wetting characteristic in that it

measures the slope K in equation (10). ,,

Equations and Boundary Conditions

In the lubrication limit 0 + 0 the Navier-Stokes and continuity equations reduce to

-Pr + Sl3,z = 0 (40)

-Pz = 0 (41)

(ur+ (rwv)z 0 *(142)

Note that S1 3 , which is associated with shear thinning in viscoelastic materials, is
the only stress component that remains in the reduced system (40)-(42). Components

such as SII, S22, S3 3 , associated with normal stress differences, are not explicitly
present in the equation of motion in the lubrication limit.

The boundary conditions are as follows:

(i) zero normal velocity at the rigid plane

w 0 on z=O (43)

(ii) modified slip condition at the rigid plane

Y S hu on z =0 where (44)

2 (y'/aoeo) 2  (45)

(iii) kinematic interfacial condition

ht + C(uhr-w) on z = h(r,t) . (46)

(iv) dynamic boundary conditions on the interface are

hrr +. hr + Cp  0 on zi h(r,t) and (47)

S13  0 on z =h . (48)
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Rheology

Using the scalings indicated above, we find that the constitutive relation (17)

becomes, in dimensionless form,

+, + ,C[(v.v)§ + - =*( + (49)

where in the lubrication approximation

S uz  0 -u -

and where x,e are relaxation parameters defined by
a 0

- , (51)
00

2
aOlO (52)

Note that

A/c 0 0  (53) -.

The form of equation (49) shows that A is a measure of stress relaxation while e is

a measure of shear thinning. Hence, relation (53) implies that stress relaxation

only becomes important when shear thinning is absent. Henceforth, we retain only

the effects of shear thinning by taking s = 0 and considering the corotational

Maxwell model.

The components of equation (30) are

S1l - CCuZS13 = 0 (54)

S13 +7 (u(l 33) z (55)

33+ EcuzSl 0 . (56)

Frau these we obtain

uz
S (57)13 1+C 2 C2 u

which implies that the effectlve viscosity for simple shear is

1
2.+ C• (58)),1 + C u uz

4. Evolution Equation

We integrate equation (41) and use the boundary conditions (24) and (25) to obtain

the equation

,h+ a(h)- 0IT (59)
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where
h(r,t)

hQ -- t r u(r,z,t)dz • (60) -

Fran integration of equation (41) we obtain

p = p(r,t) (61)

so that the boundary condition (28) gives

(rhrdr + C-F(r,t) = 0 (62)

substituting into (40), we obtain

l(rhr)r + CSI 3 ,z =0 (63)

Integrating this with respect to z and using condition (48), we obtain

cs13. (h-z) {fl'r[rh (64)

We now combine equations (59) and (57) to obtain

cuz
2 2 2  (Dh)(h-z) F say (65)I + re C uz .;. -

Cu - -,-2- (66)
4, 2e F

Here
Dh :-= 4(hr •(67)

-r rr r

Equation (58) shows that the effective viscosity tends to zero as the shear-thinning

parameter e tends to infinity. Such models are known to be reliable only for small

values of €. We therefore assiue e to be sufficiently small that an expansion of

equation (66) is possible, whereupon we obtain

Cuz = (rt)(h-z) + e2 [(Dh)(h-z)] 3 + O(E4) . (68)

Integrating and using the boundary condition (44) we obtain

Cu = (Dh){y2 + 2 _(hz)2} + I 2 (Dh) 3 {h4  (hz)4} . (69)

Integrating again over 0 to h, we obtain

ChQ - (Dh)(y 2 h + 1 h3 ) + I E2 (Dh) 3 h5  . (70)

Substituting into relation (59) we now obtain

ht + -1 r(h) (Y2 h + 3 ) + t e2r(Dh)3h5}r = (71)
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Equation (71) is the sought-after evolution equation to be solved subject to the

appropriate side conditions.

5. Newtonian Liquids

We wish to consider the evolution equation (71) for Newtonian liquids (e=0),

ht + .I {r(Dh)[y2h + h3 ]} r = (72)

subject to the edge conditions

da _ C ( h IF )

Mr F
at r =a(t) , (73) .

the symmetry condition

hr = 0  , atr=0 , (74)

and the initial condition

h(r,t) - ho(r) at t =0 . (75)

Furthermore, the volume of the drop is V,

a(t)
SV= 2r r h(r,t)dr . (76)

System (72)-(76), apart fron minor redefinitions and rescaling, is identical to that

of Greenspen (1978). It contains four parameters: the capillary number C, the slip

*" parameter y, the equilibrium contact angle OF, and the volume V. Before we discuss

the behavior of the drop, recall that the time t in system (72)-(76) is scaled in

units of the viscous-capillary scale a0p/o .

System (72)-(76) governs the creeping-flow of a spreading drop in which the

spreading occurs through two distinct mechanisms.

(i) If the initial contact angle were equal to its equilibrium value OA, but the

meniscus were not an equilibrium shape, then there would still be relative motion in

the drop. Surface tension on the interface would produce capillay pressure

gradients that drive a viscous flow, change e from OA, and cause spreading. Call

this mechanism "capillary push".
(ii) If the drop shape were a spherical cap, and hence a static meniscus, but had a

contact angle e > OA, then the edge of the drop would necessarily move outward until

a = OA . Call this mechanism "contact-line pull". *he total influence of the "
wetting characteristics of the solid surface are incorporated in the relation (10),

and they are responsible for the "contact-line pull".

In general, the drop spreads through the joint mechanisms of "capillary push" and

"contact-line pull", the proportion of which is governed by the number C. Here C is

a non-dimensional version of K in equation (10). If C is small, then the contact

angle is very sensitive to contact-line speed. If C is large, then it is not.
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We can now turn to system (72) and examine the spreading characteristics of drops

having either sall or large C. In order to do this we introduce a new time scale

T= Ct (77)

in which the unit of time is independent of pO and o. We can then rewrite equations

(72) and (73) in terms of this as follows:

+ {r(Dh) h + h r (78)r +) + = 0

-h e at r a(t) . (79)

We consider first the case C << 1. Fran equation (73), when t= 0(l), ~ 0, so

that the contact line remains fixed but the shape of the drop, governed by equation

(72), readjusts to its initial shape through "capillary push". This readjustment
-occurs until t h(-,); equation (78) shows that lfy2 +1 h3+r '

solution Dh - 0 gives a constant curvature meniscus. This static meniscus is

subjected to appreciable "contact-line pull" through equation (79). This lasts . ,.

until the final equilibrium shape evolves.

We now consider the case C >> 1. From equation (78) we see that h 0 leads to a

meniscus that is quasi-static. However, the limit C + .is singular and there is a
boundary layer near r = a(t) of width O(C- 1/4) in which there are rapid spatial

changes. This is consistent with equation (79) which shows that there is appreci-

able "contact-line pull" to the edge. This situation holds for t = 0(0-1). After
this small initial time equation (79) shows that this readjustment occurs with fixed

contact angle. 3..V.

We define t ( 2 ) as the time for a drop to double its initial radius; the -

corresponding doubling time on the scale defined by equation (77) is denoted by
T( 2 )  Figure 2 shows the shapes of the drop at t = 0 and t . t ( 2 ) for C = 1.
Figure 3 shows T( 2 ) as a function of volume V for various values of C. One sees

h,

0.6-

0.6"

1.0

04-

0.2 ,(2

0 0.s 1.0 I.5 a""

Figure 2: Axisymnetric drop, shapes at t 0 and t = t 2  for C = 1
y= 0.01 and c = 0.
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Figure 3: Axisymmetric drop, doubling time as
a function of V for various C, with
e = F =O and y= O.O1.

140
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from Figure 3 that for a fixed V, T( 2 ) decreases with decreasing C. A combination
of forms (20) and (77) reveals that the time scale T is independent of the material

properties of the liquid, and therefore one infers from Figure 3 that the doubling
time increases with increasing viscosity and decreases with increasing surface

tension. The curves in Figures 2 and 3 are obtained from numerical solutions to

(72)-(76) computed by Rosenblat and Davis (1983).

6. Non-Newtonian Liquids )

In the case of non-Newtonian liquids the evolution equation (71) must be used in

place of the Newtonian version (72), but the boundary and initial condition (73)-

(76) continue to apply without modification. An additional parameter c is present;

this parameter is a measure of the degree of shear thinning caused by the presence

of polymer additives, for example.

The two basic physical mechanism of "capillary push" and "contact-angle pull"
remains in force for non-Newtonian liquids, and the effects of viscoelasticity are

essentially limited to producing quantitative changes in derived quantities such asthe spreading rate. Although the parameter € enters the evolution equation (71) in

a somewhat complicated way, so that its role is not obvious in this equation, it is
relatively easy to see the pert played by viscoelasticity by looking at equation
(58); It causes a decrease in visco Ity compared with the latter's zero-shear-rate
value. his n turn results in decreased viscou3 resistance to capillary pressure
gradients, thereby accelerating spreading rates.
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Figure 4: Axisymmetric drop, variation of

radius with t for shear-thinning
E- and non-shear-thinning cases,

with C = V =1, 0 F 0 and
4 E=5 y 0.01.

.

L3 2.0 a/a.

%Numerical solutions of the system (71) and (73)-(76) by Rosenblat and Davis (1983)

confirm this result, and show that spreading rates increase with increasing c when

all other parameters are held fixed. This is shown in Figure 4. The effects,

however, are very small in magnitude since the viscoelasticity only enters

at 0(c 2 ). As pointed out earlier, shear thinning is more significant than stress

relaxation or normal stresses (at least in the lubrication approximation), so that

these latter are very small indeed.

In practice the most important consequence of the addition of polymeric additives is

the change in the zero-shear-rate viscosity pO . This quantity enters the capillary

number C linearly and therefore, as shown in the previous section, dcminates the
various characteristic times of the drop dynamics. In eneral the addition of i.

polymers tends to increase the zero-shear-rate viscosity, and therefore to slow down

the spreading of the droplet which, of course, is opposite to the effect of shear

thinning. This particular, probably predominant effect of viscoelasticity appears

only in the value assigned to the capillary number C.

7. Conclusions

We have seen that the spreading of a Newtonian liquid drop depends on both k 'A
"capillary push" and "contact-line spread" as measured by the effective capillary

number c.

Non-Newtonian effects are dominated by shear for the thin drops governed by

lubrication theory. Thus, shear thinning is the principal effect of viscoelasticity

leading to non-Newtonian drops spreading faster than their Newtonian counterparts

which have equal zero shear-rate viscosities. This viscoelastic effect is most

pronounced near the contact lines where the strict condition for "sensibly"

.. Newtonian behavior is e << y rather than the usual condition e << 1 appropriate to

flows without contact lines. Thus, the fluid remembers the contact line.
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Effects of Streamline Curvature on Turbulence

M.M. Gibson

Mechanical Engineering Department, Imperial College, London, Great Britain

1. Introduction

The effects of longitudinal curvature on the turbulence in thin shear layers has

received a good deal of attention from experimenters aM modellers and in many

respects they are now well documented. The turbulence structure is highly

sensitive to the additional mean strain rate introduced when the mean streamlines

are curved in the plane of the mean shear. Turbulent energy and shear stress are

reduced relative to rectilinear flow when the angular momentum of the mean flow

increases in the direction of the radius of curvature, as in a two-dimensional

bnundary layer on a convex wall, and increased when the angular momentum decreases .

with increasing radius, as In concave wall flow. In contrast to laminar flow where

the fractional changes in shear stress are of the same order as the shear layer

thickness to the radius of curvature, measurements in turbulent boundary layes on "v

-,arved walls show fractional changes an order of magnitude greater.

The extent of these changes is illustrated in Figure 1, where profiles of the shear

stress in a number of convex wall boundary layers are plotted for comparison with

Ylebannffs [1 flat plate data. In each of these experiments a boundary layer

.,- '.. .

- Fig. 1. Shear stress profiles in flat and

convex wall boundary layers (from
(4 ]). - Klebanoff (1]. flats

a ___ U, " (2], flats (2], convex, -
%- - (3], convex; ..-

% [ 5], convexi ';

(6], convex. Data points
I I.L from (4] show changes from flat

0.2 0.6 6 &1 1.0 12 to mildly curved convex wall flow.
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developed first on a flat wall upstream of a curved section. The effects of wild

curvature, when the ratio of boundary layer thickness 8, to the radius of curvature

of the wall R, is approximately 0.01, appears in the results from [2,31 and our own

measurements [4) shown by the data points; it is enouqh to reduce the relative

shear stress levels away from the wall so that the profiles become concave upward.

These trends are accentuated when the stabilizing curvature is strong and prolonged

as in the experiments with 8/R - 0.1 reported by So and Nellor [S) and Gillis and

Johnston [6). In these flows the effects are so strong in the outer part of the

layer that the shear stress is extinguished or reversed. At the same time the wall

shear with which these data are normalized is itself reduced below levels

appropriate to plane flow in the same conditions, and the growth rate of the layer I
is also reduced. "i

The recent literature contains numerous papers on the response of the fluctuating

velocity field and a number of these were used to provide test cases at the 1981-2

APOSR-HTI'N Stanford Conferences on calculation methods for complex flows. The

effects may be predicted either by modifying the mixing length distribution in

ways suggested by the buoyancy analogy or, not altogether satisfactorily, by the

numerical solution of modelled equations for the Reynolds stresses. The

corresponding changes in the fluctuating scalar field have received much less

attention at the level of detail needed to validate turbulence model hypotheses.

This neglect is surprising in view of the evident importance of heat transfer in

engineering practice. Early heat transfer measurements by Wreith (7], Thomann [81

and, more recently, by Mayle et al (9] show that changes in the Stanton numbers in v..

curved wall flow are of the s, we order of magnitude as estimated changes in the

skin friction coefficients which were not measured in these experiments. As a

first approximation it might be reasonable to assume that Reynolds analogy is

unaffected by changes in the mean strain or, alternatively, that the eddy

diffusivity ratio (or turbulent Prandtl number) remains the same as in plane flow.

Assumptions of this nature may well suffice for engineering calculations but they

are insecurely based. Examination of the boundary layer conservation equations for

- the shear stress and cross-stream scalar flux shows that the generation terms that~~~contain the additional mean strain rates are weighted dif ferently in the two . '

equations with respect to the main generation terms. Appeal to the buoyancy *...

analogy also undermines simple assumptions of the Reynolds analogy description.

the eddy diffusivity ratio in a horizontal density stratified shear layer is known

to be sensitive to the degree of stratification.

The present short paper is largely based on recent experimental work by the author

and his colleagues which originated in an unsuccessful attempt to predict scalar .,; .-

transfer in curved shear layers with a simple second moment closure scheme. The

~~ buoyancy analogy is first extended to cover heat transfer an well as m entum '

transfer, s90M of the results of measurements in curved heated wall flow are

185
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briefly discussed, and the paper concludes with some reflexions on second moment

modelling related to Professor Corrain's studies of homogenous shear flow.

2. The Analogy Between Streamline Curvature and-Buoyancy

This analogy seems to have been recognised first by Prandtl (10] and revived by

Bradshaw 111) who discusses the effects on the etynolds stresses of gravitational

sources and extra strain in longitudinally curved flow. It is worth while

considering the simple extension of the analogy to the fluctuating scalar field.

An element of fluid in a buoyant flow which has a density of (p + p) will

experience a force - p'g/p per unit mass in the vertical direction. A element of

fluid in a curved flow which has velocity (U +u) will experience an apparent

centrifugal force (greater than the mean centrifugal force which is balanced by the

mean radial pressure gradient) of ((U +u) z - Uz)/R = 2Uu/R in the outward

direction. The turbulent energy and shear stress equations for two-dimensional,

(a) horizontally stratified and (b) longitudinally curved shear flow can be written .',,

with some approximations and the replacement of density by temperature as:

D 1+1- v - OU ,Uv I +u

Dt 2 ,,,, 2

+(v U 2 - 8 Ur

The additional analogous generation term are bracketed together and, in the

curvilinear coordinate system, y is the distance measured from a reference

streamline whose local radius of curvature is R, and r - R + y. The extra sources
of stress and energy in the buoyant flow involve the fluctuating density .N.

(temperature) field; in the curved flow only the extra mean strain rate U/r (for ',

temperature differences of order ten degrees "centrifugal buoyancy" terms are an

order of order of magnitude smaller). The curved flow sources are the sum of the

"true" rate of generation from the mean strain and "apparent" generation term
which arise through the rotation of coordinate axes. It is important to make this

distinction when modelling the pressure-strain teru of the Reynolds stress

equations.

A measure of the influence of buoyancy is the flux Richardson number which is

defined as (minus) the ratio of turbulent energy production by buoyancy forces to

production by the mean sheart

Rf - (3)

Bradshaw (11] defines an analogous flux Richardson number for curved flow as the

ratio of (minus) the v-component energy production to the u-component shear
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production. A more convenient def inition which arises naturally in the

manipulation of the conservation equations is the ratio of (minus) the v-component

energy production to the total man shear production - W( GU/Sy - U/r). Thus:

Rf = _ 2UvIU/ r -23 (4)

uv(SU/6y - Q/r) 1 3

where S is the strain-rate ratio (U/r)/(8U/&y).

The corresponding equations for the streauiwise and cross-stream fluxes are

+ + + LI/r ( 6

ay P Y P e [us /r tesrms

4Here again a distinction is drawn between the (first) extra "true" generation tr
and those which arise solely through the transformation from Cartesian to

curvilinear coordinates.

It Is Instructive to examine the relative weighting of the extra source terms in

the uv and ve equations. The combined rates of production of these quantities may

be rearranged in the following ways

SOURCE OF uv

-U us uv a 0-2 [Vq*

y ;79 WE ey (VS

*1CURVED -V uS uv- M)I

CO.

.4where Kp/rH is the ratio of the turbulance exchange coefficients, the reciprocal of

the "turbulent Prandtl number":

ytv(0Q/&y - U/r) (7)
KM uvr/ey

It is now possible to form some idea of the relative strengths of these effects at ,.

small values of Rf by substituting plausible values of the stress and heat f lux

ratios. When this is done the factors multiplying the principal production terms

appear as follows (it is appropriate to consider the factor multiplying the

* velocity gradient eu/Sy rather than the strain rate (OU/&y - U/r) in curved flow): i

BUOLYANT (I -2Rf) (I -4Rf)

*CURVED (I -3.5Rf) (1- 2Rf)

WMile these are all of the same order, and there is room for disagreement on the

exact values Inserted because the experimental data are so scattered, the
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conclusion that the generation rate of v is nor* strongly affected by buoyancy

Interactions than that of 0 appears to be supported by measurements. The

homogeneous, buoyant, shear flow data of Young (12] reproduced in (131 though

scattered, show decreasing values of XKJq with increasing stability and the se

trend is evident in the unstable regime (Rf - 0) of atmospheric surface layer

asurements (141 reproduced from [131 in Figure 2 together with the behaviour

predicted by the use of modelled second moment equations. In making these

predictions 3.E. Launder and the author argued that in the stable regime (Rf , 0)

the effect of the ground on the fluctuating pressure interactions responsible for

the destruction of shear stress and heat flux is modified by the attenuation of the

length scales. The underlying trend for XR/KRJ to decrease with increasing Rf is

then countered as the ground effect weakens and the structure more closely

approaches that of free flow with presumed higher values of KXg/K in local

equilibrium conditions. Two curves are shown in Figure 2: the original published

predictions [131 shown by the broken curve, and the results obtained when the

constants in the turbulence model are changed, as will be described, to be

consistent with the treatment of curved shear layers.

25'

0 0

20 . :80002 0 -- •,

IS - Fig. 2. Measured and predicted depend-
ence of the ratio of exchange

V 0 coefficients on stability in
S- - -  - - the atmospheric surface layer.

Data from [141; predictions

[13] (broken line), revised

1983 (full line).

The factors multiplying the source term in the curved flow equations show the

opposite response to changes in Rf: the generation rate of UQ is apparently more

strongly affected than the generation rate of g. If this interpretation is

correct the result might be expected to be an increase in Ki/'Km with increasing Rf

in both stable and unstable regimes which could not be affected by the proximity of

the wall in the same way as the buoyant flow. In fact, two sets of measurements ,

(15,161 in heated boundary layers with stabilizing curvature, and in the internal

temperature boundary layer in a convex wall jet (17], indicate, with some necessary

qualifications, just the opposite response to a change in curvature. This

unexpected result is related to the times taken for structural changes in the outer

part of the layer, wbl.ze the effects of extra strain on the large scale motion are

strongest, to be comunicated as changes in wall stress and heat flux.
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Interactions with the fluctuating pressure field presumably also play a crucial

role.

3. Measurements in Curved Wall Layers

Few experiments have been reported in which velocity and temperature field

measurements have been made in luficient detail to guide the development of heat

transfer models for curved flow. simon and Noffat (15] have recorded surface flux

and mean temperature distributions in the boundary layer on a ninety degree curved

plate with a thickness to radius ratio of about 0.1 and for which some details of

the fluctuating velocity field were available. Our own experiments (4, 16) on a

more mildly cure convex wall flow (8/R - 0.01) were conducted in the rig

illustrated in Figure 3. To these we have since added measur emnts in the internal

temperature layer in a convex wall Jet under a uniform velocity free stream (17).

and rather less detailed measurements in a mildly curved concave boundary layer.

The main result of all these measurements is that the heat transfer through the
curved layers is apparently more sensitive to the curvature than the turbulent

velocity field.

~~ir1 1219 1-
::J109

symbol x mm
o 0 SI straight entry section 7 2410 rod1299

£ 0,
e 209

o 467 curved section
a 7.31
0 10011

Fig. 3. Wind tunnel sections for heated wall boundary layer experiments 4. 16 ).

Figure 3 shows alternative working sections that were fitted to the contraction of

a conventional open circuit blower wind tunnel. The boundary layer was tripped at

exit from the contraction and then developed naturally on the floor of the constant

section (305 me x 102 m) straight duct to a thickness 8 of 19.8 - 1.22m downstream

of the trip. At this point alternative convex or concave curved sections could be

fitted, each 1.22 m long with nominal test wall radius of curvature R - 2.44 m. The

floors of the curved sections were of aluminium, instrumented with thermocoupoles I.

and heat flux mters and heated by electric blankets to a uniform temperature 15

deg. C above that of the wind tunnel air. Comparative velocity field measurements

were also made in an unheated straight section of the same length. Standard
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hot-wire and resistance thermometer measurement techniques were used with on-line

data processing by micro-computer. The effects of this mild (6/R - 0.01) wall

curvature on the Reynolds stresses are indicated by the data plotted in Figure ;.

the changes in the thermal turbulence are of the same order. The mean field data

plotted in Figure 4 shows, as expected, that the skin friction coefficient cf and

the Stanton number are depressed on the convex wall relative to the values shown

for plane wall flow and increased on the concave wall, in accordance with the

general rule [10] that the changes are an order of magnitude greater than a/R.

-20C 0 00

1.35 I
1301

CeO

3

2 le I I ,

StiOb 00296 Re'Pr" ' Fig. 4, Streamwise variation of the .
shape factor, skin friction

2 ea A Z _coefficient and Stanton number
in flat, o, mildly curved
convex, e, and concave, A,
boundary layers. Broken line

IIIIII __L__ is Ludweig-Tillmann formula

-800 -1.00 0 Xrm £00 800 for Cf.

It was not expected, however, that the changes in St would be greater than those in .

cf. The distortion of the mean flow is shown in the changes in the shape factor H

which increases in the convex wall layer and decreases in the concave wall layer.

A minor feature of interest is that the skin friction may be calculated quite

accurately in these and other curved flows by the Ludweig-Tillmann formula, in

which low cf values are associated with high H and vice-versa, as for boundary

layers in pressure gradients.

One reservation must be expressed: while the surface heat transfer has been K .

measured independently, and in different ways in the two sets of experiments, the I,,

skin friction coefficient in these and in all previous curved wall experiments were

obtained by Preston tube and Clauser methods which rely on the persistence of the

"law of the wall" in the usual flat plate form. It is, however, easy to find a

semi-logarithmic distribution of the measured mean velocities; very much more

difficult to fit the temperature profiles. The Simon and Moffat data from the

highly curved flow in particular show large departures from the logarithmic form.

Y 10. -. -- ".



Because the behaviour of the man fteld near the wall is important in calculation

methods which employ "wall functions" to resolve the sublayere we have experimented

with various hypotheses for the flow in this region. The buoyancy analogy and

subsequent experience suggests that the effects of mild curvature may be

accounted for in calculation methods by multiplying the rectilinear flow mixing

length distribution 10(y) by a factor linear in the strain rate ratio:

# - o(l - 13) (o)

where the coefficient 1 is generally of order ten; a maximum value of 14 is

recommended in E161 for mild curvature effects while Adams and Johnston (191 have

used a value of 6 to calculate the development of a highly curved flow equivalent

to that of (6]. The response of I to a change from flat to curved wall conditions

Is described by a simple rate equation for 13

''%~~~. -D- 9

in which the adjustment length X may be estimated E19] as the product of the mean

velocity and the "memory time" of the stress containing eddies

x - - Ual i/ (10) %

The mildly curved convex layer results, reproduced from [4] and (16] in Figures 5

and G, broadly support this hypothesis (O) and its equivalent for the temperature *

lengh sale atleat i th iner rgio. I th ouer onetheattenuation of
length scales is considerably overestlmated. In an adjutment length of 508 it is

appropriate to use the full values of 1 and 09 to modify the flat plate mixing
%'

length profiles.

0.12 ~6
0.10 . a

OA2 0, /a A0.0% 0.06~ 0

0.06 .,0.1

0 0.2 0.& 0 v YA 0.8 1.0 1.2 0 0.2 OA 0.5 y/6 0.6 1.0 1.2

Fig. 5. Cross stream variation of the Fig. 6. Cross stream variation of the '.
.4turbulence length scale in therinal length scale in ''--:

flat ndconvex vail flat and convex wall boundary .-,.*boundary layers (4]. layers [ 16]. L
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The use of (9) with the usual mixing length formula for a constant strems inner

layer produces, to first order, the modified law of the wall:

u+ - Iny+ + A+DZA p(Any+ AA)(
K RK

and Its equivalent for the temperature distribution:

" L 1ny+ +  + P 1ny + + -) (12)
Ke K .R* K K

The additional term in (12) should be greater than those in (11). It is argued

that time constant in a rate equation for n is related to the response time of the

thermal turbulence:

t i/** (13)

which is less than half of the mechanical time scale (10). The initial changes in

Stanton number plotted in Figure 4 support this idea of a more rapid responses

direct measu.ments of the thermal/mechanical time scale ratio in the convex

boundary layer are reproduced from [16] in Figure 7. A value of about 0 34 was also

obtained for this quantity in a heated homogeneous shear flow by Tavoularis and .sk

Corrsin [20]. Although the accuracy of this sort of measuremnt is not very high 0'.

the results suggest a slight increase in the time scale ratio in the curved flow

resulting from an expected decease in t while to, like the temperature variance,

remains substantially unaffected by the curvature.

7he changes to the wall laws (11), (12), reflect only qualitatively but not

quantitatively the observed trends, with slightly better agreement obtainable for

the high curvature data of (15] then for own measurements. Better results have

been obtained by C.A. Verriopoulos [21] using the mixing length correction with an

assumed 1/7 power law for the velocity distribution to integrate from the wall
through the sublayor8. Figure 8 illustrates how the temperature profiles in the

two convex boundary layers may be fitted in this way when 0 is taken as 14 and Kg/Kg1

," 1.0 k;

0.7 m 0 V

00 0

0.25 -

2 Fig. 7. Cross stream variation of the "
V thermal/mechanical time scale

ratio. Data points as in Fig. 3.
0 Comparative data from plane flows

0 0.2 0.4 0.6 A 0.S 1.0 1.2 cited in [16].
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Fig. 9. Departure. of the mean temperature profiles from the inner law in mildl," 4
curved E16] and strongly curved E15] convex wall flow. Empirical
formulae by Verriopoulos [21].

is 0.99 and 0.94 of the global values obtained from the slopes of the temperature

and velocity profiles in flat wall flow for weak and strong curvature respectively.

The values chosen are, however, not unique and the data can be fitted over a range

- of P and KH/KM. Finally, Figure 9 shows the cross stream variation of KH/KM in the

mildly curved boundary layer. After allowing for the usual considerable

uncertainty which is inevitable in this sort of measurement, the trend seems to be

that this quantity is decreased by stabilizing curvature. These results are at

variance with the expectations based on the order of magnitude arguments of the

last section. It would be useful to have additional confirmation from other ,..

sources, especially from curved wall experiments with the wall shear obtained

independently of assumptions about the nature of the mean velocity profile. The

1.2 2

0
A.0 0 0

R 0., - G_ ;a..

0., --.

Fig. 9. Cross stream variation of the
0.2 ratio of the turbulent exchange

coefficients in flat and mildly
curved convex wall flow. Data

0 0.2 0.4 0.6 0.8 1.0 12 points as in Fig. 3. (from [16)). |,
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observed response to the extra strain affecting the turbulent stresses and scalar

fluxes also undermines assumptions commonly made in the construction of modelled

equations for the second moments. it is to this topic that we now digress in the

following section.

4. Modelling the Second Moment Equations

For the purpose of practical flow calculation in the forseeable future, the lowest

level of turbulence closure which accounts properly for complex strain fields

generally, and curvature effects in particular, is at second moment level. The r
application has not, however, been uniformly successful in this context. For

example, Launder and Morse (22] found that their modelled equations for the

* Reynolds stresses actually gave a shear stress component with the wrong sign in a

swirling jet, so that the calculated spreading rate was reduced rather than

* increased by the swirl. Launder and Morse identified two major weaknesses in their

method: in the empirical auxiliary equation for the turbulent energy dissipation

rate, and in modelling the pressure-strain correlations of the Reynolds stress

equations. Similar weaknesses are exposed in the application of similar methods to

the calculation of longitudinally curved flows.
" .

1 with a few exceptions (see, for example, the discussion of intercomponent turbulent '

energy transfer in homogeneous shear flow by Harris, Graham and Corrsin 123]) most

modellers have expressed the difficult pressure-strain terms in the stress

equations as the sum of two components: one involving only the averages of

fluctuating quantities, and the other containing explicitly the mean strain rate.

A basic requirement is that the two components ought separately to satisfy the

conditons set by the observed rate of return of anisotropic turbulence to isotropy
in the absence of mean strain, and a theoretical result for the response of

suddenly distorted isotropic turbulence. A third condition is that the model

should realistically predict the shear stress and the partition of energy between

components in simple shear flow.

Few, if any, pressure-strain models in general use actually satisfy all three

*. conditions. Most authors have followed Launder's [24] example in modelling the two

components separately and requiring that the mean strain or "rapid" part of the

model satisfy the exact result of rapid distortion theory. The coefficient of the

turbulence term is then adjusted, not necessarily to accord with the measured rates

of return to isotropy, but to recover roughly the correct stress levels measured by
Champagne, Harris and Corrain (25] in a weakly sheared homogeneous shear flow. It P%
is the incorrect balance between these two components in an over-simplified model

. of the pressure strain that contributes to the anomalous results obtained for

. curved and swirling flow.

STo fix ideas consider the the widely used pressure-strain model [13,24]

Ma eu _ 2
P xj eXi Z 3 Cij q) C2(Pij - ijP )  (14)
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The first term on the right hand side is Rotta's linear intercomponent energy

transfer model; in the second, mean strain, term, Pij and P are defined as the

production rates of u-j and 1? respectively. This expression [14] necessarily

represents a drastic over-simplification of the complex physical processes involved

but it contains the two essential ingredients and gives results which in practice

are not noticeably inferior to those obtained from more complicated formulations.

The constant C1 must be approximately 3.0 to fit the return to isotropy data and

C2 0 0.6 satisfies the result of rapid distortion theory.

For high Reynolds number shear flow in local equilibrium it is easily shown [26]

that the stress ratios are functions only of (l.-C 2 )/C1 which, to give approxi- 4

mately the right stress levels for the homogeneous flow with weak shear [25], has

to lie between 0.18 and 0.24. Figure 10 shows how the model constants have been -r-

adjusted by various authors so as to satisfy this condition. In our earlier

calculations of buoyant shear flow in the atmospheric surface layer (Figure 2) we

took care to satisfy the rapid distortion requirement and in consequence had to
reduce C1 from the return to isotropy value of about 3.0 to 1.8 to get (l.-C 2 )/C1

into the weakly sheared homogeneous flow range. It is now argued that the emhasis

should be changed so as to reduce the contribution of the rapid component; indeed

this change is necessary to obtain reasonable predictions of longitudinally curved

flows which are independent of the choice of coordinate system. The predicted

effects of swirl on the development of a jet are also substantially improved when

the relative weighting of the rapid contribution is reduced; in this particular

model [14] by setting C2 equal to 0.3 and restoring C1 to 3.0. The effects of

gravity on the density stratified turbulence in the atmospheric surface layer have

also been recalculated, with this and other minor changes, to give the results

compared with our original predictions [13] in Figure 2.

:.-.
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Fig. 10. Values of the constants in the pressure strain model (equation 14)
needed to satisfy three basic conditions. Full line for weakly sheared L
homogeneous flow (25] broken line for strongly sheared flow E23].
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In requiring that a pressure-strain model given roughly the right stress levels in

the weak shear flow [25] we, and most other authors, have ignored the later

measurements by Harris, Graham and Corrain [23] in homogeneous flow with strong

shear which have implications for turbulence modelling discussed by Leslie [26].

On this occasion it is worth turning aside to look at the model results for the high

shear case with a turbulent energy production to dissipation rate ratio, P/, of , 60.4,

approximately 1.55 (from Leslie's analysis of the data). It turns out that when

the first two conditions are satisfied by setting C1 and C2 equal to 3.0 and 0.6 so

that (1. - C2 )/CI = 0.13, the stress ratios obtained by Leslie's method are not too

far from the measured values with which they are compared in the followed table.

TABLE I ".,
44.• _. j

Measured and predicted stress levels in highly sheared homogeneous turbulence

C1  C2  (1 -C2 )/Cl uZ/qZ v z w F Z/ __ uv/q-

(a) 1.9 0.6 0.22 0.51 0.245 0.245 -0-.1
model (b) 3.0 0.3 0.23 0.54 0.23 0.23 -0.19

(c) 3.0 0.6 0.13 0.45 0.275 0.275 -0.155

Data [231 - - - 0.50 0.20 0.30 -0.15

Although the model constants (c) in the table give very nearly the correct shear

stress to energy ratio of 0.15, the partition of energy between components, which

may strongly influence the development of flows with complex strain fields, is not

well predicted. We have not pursued this matter much further, only to ascertain

that the spreading rate of a swirling jet is considerably underpredicted when these

constants are used. When the pressure strain model [14] is substituted in the

Reynolds stress equations for curved flow, and the transport terms are discarded

for local equilibrium turbulence, the resulting set of algebraic equations is

easily solved for the stress to energy ratios as functions of the curvature

Richardson number. Calculated values of the structure function - uv/ j for the
three sets of model constants are plotted in Figure 11. It is seen that although

04 ~b 0

.1-c

0. S

0.2 -01 0 0.1 at 0b 04 ::.

Fig. 11. Predicted extinction of the shear stress in curved shear flow in local

equilibrium.
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Fig. 12. Measured and predicted variation of the structure function along the

centreline of a highly curved mixing layer (27].

the ratio (1 - C2 )/C1 is nearly the same (0.22, 0.23) for sets (a) and (b) the

critical Richardson numbers at which shear stress extinction is predicted are

considerably different. The critical value for set (b), Rf - 0.32 is very close to

the lowest value measured by Castro and Bradshaw (27] on the centreline of a highly

curved mixing layer where, in nearly local equilibrium conditions, the shear stress

fell to very low levels. Figure 12 shows the measured and calculated variation

of the structure function on the centreline of this flow. The pressure strain

model (14] has been used with the constants C1 - 3.0, C2 - 0.3 as in (b) above to

give the results shown by the full line; also shown, by the chain dotted curve, are

the results of calculations based on modified rapid distortion theory (23], and, by

the broken line, those obtained using an uncorrected eddy viscosity model. This

single example will suffice to show what can be done in the calculation of curved

flow using a relatively simple model of the pressure strain. Fairly good results

can also be obtained for highly curved boundary layers and wall jets with strong

destablizing curvature in the outer mixing layer but not, unfortunately, for mildly

curved wall layers. The modelled equations linked to wall functions based on the

logarithmic law are apparently too "stiff" to respond correctly to relatively small

changes in the mean strain rate. -.6 .

The problem of closing the equations for the heat fluxes by modelling the pressure

containing correlation has yet to be solved satisfactorily. For homogeneous flows

the solution of a Poisson equation for the pressure can again be used to relate

this correlation to a volume integral involving two-point quantities: one type

containing only turbulence correlations and another containing the mean rate of

strain. Received opinion is that a single-point closure model ought to contain

similar separate terms, for example in the counterpart to the simple

pressure-strain model (14]3
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This conventional hypothesis that the pressure correlation is unaffected by the

presence of a mean temperature gradient is questionable. Certainly the observed

effects of longitudinal curvature on heat transfer are not accounted for by closing

the conservation equations in this way and a less restricted approach seems to be

needed. The theoretical arguments for the inclusion of the mean temperature

gradient in the pressure correlation model which have been presented by Jones and

Nusonge (29] and Dakos (30] are a promising step in this direction, though they

have yet to be tested in model studies of inhomogeneous flows.
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Limitations of Second Order Modeling of Passive Scalar Diffusion

John L. Lumley and Ike Van Cruyningen

Sibley School of Mechanical and Aerospace Engineering, Cornell University
Ithaca, NY 14853, USA

The problem of modeling scalar variance from an elevated source is

discussed at length. From a simple model, it is shown that observed

behavior is entirely a result of the growth of the instantaneous plume

width relative to the mean plume width. From a model valid for large

sources, we suggest a simple explanation for the apparent dependence of

asymptotic levels of variance on source size. Pope (1983) has pointed

out that second order models of passive scalar transport do not retain

the superposability of the primitive equations. Explanations for this,

and possible consequences are explored. It is shown how second order

models for the rapid terms, the time scales of which are determined by

the mean velocity (rather than inertial spectral transfer), can be con- K
structed in a superposable manner (Shih, 1984). Difficulties are des-

cribed in simultaneously satisfying requirements imposed on the cross-

dissipation by realizability and by superposability. We present compu-

tations of the data of Warhaft (1984) using a model in which the trans-

port is based on first principles, and much of the rest of the model

satisfies realizability. The model is able to reproduce the data of

Warhaft satisfactorily if the initial plume width is larger than the

Kolmogorov microscale. Calculations are carried out of a plume super-

posed on a background; satisfactory results are achieved when the back-

ground level is low, despite the lack of formal superposability, lead-

ing to the conclusion that this may not be a serious problem.

1. Introduction

One of the most important areas of application for turbulence

modeling is the prediction of the dispersal of passive and active

contaminants in the atmosphere and ocean. Whatever the turbulence

*Supported in part by the U.S. Office of Naval Research under the fol-
lowing programs: Physical Oceanography (Code 422P0), Power (Code 473);
in part by the U.S. National Science Foundation under grant No. ATM
79-22006; and in part by the U.S. Air Force Geophysics Laboratory.

Prepared for presentation at "Lectures on the Fundamentals of Fluid
Mechanics", a symposium honoring Stanley Corrsin, June 11, 12 1984 at -:

" Northwestern University. Parts of this paper will appear in the M. S. V'
Thesis of IVC.
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modeling technique used, it is important to verify that it is capable W

of reproducing the important qualitative and quantitative features of

the observations. In this section, we will use crude models to display

the qualitative features of dispersion that are evident primarily in

the measurements of Warhaft (1984) (and to a lesser extent in those of

Fackrell & Robbins (1982)), and that we feel are important.

We are particularly interested in the second-order modeling tech-

nique, the so-called one-point closures. In this technique, equations

are carried for the means, variances and fluxes, and these equations

are closed by representing the third order quantities and certain other

terms such as the pressure correlations, in terms of the second order j4.
quantities.

One of the aspects of contaminant dispersal that we will find is

important concerns the time scale ratio of a plume from an elevated

source. As a paradigm for plume dispersal from an elevated source, we

may consider a passive plume from a line source in a homogeneous,

decaying (<q2 > x_1 3 5  £ x0 .3 2 5 ), isotropic irbulence, a model

. for Warhaft's (1984) experimental situation. We may suppose it self-

preserving, with an average half-width proportional to le, and a max-

imum (centerline) value of 00. If the plume is self-preserving, we may

expect that

= 2,<Ee> =  h(n) 0  v1/18,

<a, 2 > e0
2 g(n) (I)

where g(n) and h(n) are universal functions, and n f y/te. The first

relation may be obtained from equating the thermal production to the

thermal dissipation at the production peak. v' is the r.m.s. turbu- _r

lence intensity. We may also write <c> = v' 3 IL, and <q2 > f 3v' 2, from

which we may obtain the time scale ratio

r = <ce><q 2 >/< 2 ><c> = (./.)3h(n)/g(n) (2)

As we move upstream closer and closer to the source, t/18, and hence

r, becomes larger and larger. If assumptions like those in (1) are

substituted in the equation for the mean temperature, and the coeffic- %

ients in the equation are required to be constant, we find that if v' =

" const, then 0 0 - x 1 , while if v' 2 . x- 1 3 5 , then 002 . X- 0 . 6 5 .
This can be interpreted as saying that, if we are close to the elevated

source, we expect linear spread, while if we are far from the source,

so that both plume and field appear to have the same origin, the spread
is . x 0 .325, which is the same as 1. Hence, if the plume really

begins from an elevated line source, r will descend from infinity pro- %
portional to inverse distance from the source; farther from the source,

.' O3t1 ; " "" °%



when te and t appear to have nearly the same origin, they will be

growing together, and r will tend to an asymptotic value. It is a

coincidence that the initial linear behavior of to predicted here on

the basis of self-preservation matches reasonably well the initial lin-

ear behavior predicted for a line source during the short time that the

velocity field remains perfectly correlated, since the shape of the

plume during this period is not self-preserving.

Although our analysis is strictly valid only for a line source, it

is clear that an expression similar to (2) will hold for a more general

situation. Hence, it is clear that for a source which is of finite

size, the initial value of r will be bounded, and will be smaller the

larger the source is.

We may also examine the behavior of the concentration variance.

Suppose, for example, that at a given distance from the source the

instantaneous waving plume can be represented as

e(t) = esf((y-ys)/ts) (3)

(c.f. Fackrell & Robins, 1982) where f(n) is the profile of the instan-

taneous plume, with ts proportional to its half width, and es its

centerline value. We will suppose for convenience that f(n) has a

Gaussian shape, with is its standard deviation. We will suppose that

ys has a Gaussian distribution 0(ys) with standard deviation as, OF

in accordance with observation. This simple model leads to a gradient

transport form, so that <'v> = -3y<e>dt(as 2/2) and <' 2v> "

-<9ye'2>dt(os 2/2), so that both second and third moments have the

same transport coefficient, given traditionally by the rate of spread

of half the plume dispersion variance. In particular, we can write for

the mean value

<e(y)> = esfB(ys)f((y-ys)/ts)dys = 0s(y)ts (2v)
1/2  (4)

if we take ts << oS . Proceeding in exactly the same way, we obtain

for the variance

<012>= es2Ls0(y)/W(1 - 21s8(y)/w) (5)

We may easily obtain a more exact expression without assuming that the

instantaneous plume is thin relative to the mean width, but it is not

qualitatively different, and is not worth the trouble. By differen-

tiating equation (5) we can find that <e' 2> can have off-axis peaks,

but only so long as asL/2V2 < 1, i.e.- when the instantaneous

plume is relatively thick compared to the mean plume. The condition

corresponds to Is/s > 0.35, which is a bit marginal, but does not

seriously violate our condition of thinness of the instantaneous

plume.
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Now, we expect that is will initially grow as x1 /2 , while it

is spreading by molecular action. When is enters the inertial sub-

range (supposing that the Reynolds number is high enough), the instan-

taneous plume width will grow according to Richardson's nearest neigh-

* bor statistics; close to the source, when the background can be regard-

ed as non-decaying, Is  . x3 /2 , while farther from the source, when

the background and the plume can be regarded as having the same source,

it will grow as x0 . 3 2 5 . When it is no longer governed by nearest

neighbor statistics, it will also grow as xO.3 2 5 .

Hence, if the plume is initially of width smaller than the

Kolmogorov microscale, us/t s  will initially grow as x1/ 2 ; when

the plume width enters the inertial subrange, it will begin to shrink

as x-1 /2 and, as distance from the source increases, will approach a . ,
.. constant. Hence, we expect the ratio

,"(e' 2 >m/<e>m = [(I - /2Ls/os)/(V2is/as)] 112  (6)

(where the subscript m designates the centerline value) to grow initi-

ally (for a very small source); when the plume width enters the iner-

tial subrange, the ratio will begin to shrink, and will finally

approach a constant. This is in agreement with the data of Warhaft

(1984). Note that, if os/t s shrinks below 2.8 (roughly) as it

approaches its asymptotic value, then off-axis peaks will again S

appear. This is observed in the data of Warhaft (1984).

Although our reasoning is really only valid for a line source, we

can see qualitatively what will happen for a source of finite size. If

the source size is initially within the inertial subrange, both the b..

length scale ratio, and the ratio of standard deviation to mean will

initially shrink, ultimately approaching a constant. The initial value
will depend on the size of the source. All of this is in good agree-

ment with the observations of Fackrell & Robins (1982).

Csanady (1967a, b) also considered this problem, and concluded

that (6) would approach a constant in shear flows and in the atmo-
sphere; we will question this below.

One final aspect of plume behavior remains. Fackrell & Robins

(1982), Chatwin & Sullivan (1979) and Durbin (1980) have suggested that

the ultimate value of the centerline ratio of standard deviation to

mean concentration is a function of the source size. Fackrell & Robins

(1982) data appear to support this, but the experimental values are not

really far enough downstream to be absolutely sure. At first glance

this is a rather startling conclusion, and it deserves some discussion.

The model we are using is not valid in the very far downstream

regime, nor for large sources. We may construct a somewhat better mod-
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el for a large source, if we imagine a collection of equally spaced

point sources within the large source region. If we are far enough

downstream, it is legitimate to consider that the wandering plumes from

these individual point sources are far enough apart to wander indepen-

dently. If the source is very large, several integral scales in dia-

meter at the point of origin, the individual plumes will wander essen-

tially independently from the beginning. Under these circumstances, we

find that the wandering of the centroid of the combined plume is a

smaller fraction of the mean spread of the plume, the larger the

source, and that the ratio is not a function of distance from the

source. This is the reason why our simplified model is no longer

valid, since it derives its major contribution from the wandering of

the centroid. In a plume at great distances from the source, the major

contribution to the variance comes from convergence and divergence of

regions of the plume, creating local highs and lows of concentration. ".F

In our composite model, this is modeled by the approaching or drawing

apart of the individual plumes. We can easily compute the mean concen-

tration and concentration variance from this composite source. We find

that the mean concentration is the sum of expressions like (4), one

from each individual source, and the variance is the sum of expressions

like (5), one from each source. The ratio of standard deviation to

mean will thus be inversely proportional to the square root of the num-

ber of sources (this is easiest to see very far downstream, when the

differences in the source location can be neglected). Since the number

of sources is proportional to the cube of the ratio of the source size
to the integral scale, the ratio of standard deviation to mean is

inversely proportional to the 3/2 power of this ratio. Although this

crude demonstration is valid only for rather large sources, it estab-

lishes the principle that a persistent dependency of the ratio on

source size is possible. The trend from this crude model is in accord

with Fackrell & Robins (1982), and with the conclusions of Durbin

(1980).

Our models above are not really valid even for small sources very

far downstream. If as/t increases without bound (as it would in a

shear flow), then the plume is eventually torn apart by the turbulence -

and loses its integrity, violating an essential assumption of our
model. An increasing fraction of the variance is contributed by the

convergence and divergence of the regions of the plume. In effect the

plume becomes eventually N independently wandering plumes, as in the
large source model above, and N continues to increase without bound.

This suggests that the ratio of centerline r.m.s. to mean concentration
will eventually approach zero.
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This will, of course, also be true of the large source model: when

the individual plumes have spread enough to begin to split, the effec-

tive N will begin to increase over the value determined by the source

size, and the ratio of centerline r.m.s. to mean concentration will

begin to drop.
This raises an interesting question in connection with laboratory

data in decaying, homogeneous flow. It is not difficult to demonstrate

that o - 21 asymptotically in such a flow. That is, relative to
~local scales the plume is no longer diffusing. The plume certainly

does not remain coherent, but the extent of the splitting is not pro-

gressive - the plume scale and the turbulence scale are growing at the

same rate, and the effective value of N does not continue to increase.

Thus, the ratio of centerline r.m.s. to mean temperature here will I.
approach a constant. This flow is thus fundamentally unlike a shear
flow in this respect.

Note that our conclusion regarding the asymptotic behavior of

ratios of centerline r.m.s. to mean concentration values in shear flows

has far-reaching implications. In long-range transport models for acid

rain, it is important to know the asymptotic value of the ratio of

standard deviation to mean in the plume. The effective bulk reaction

rate for conversion of SO2 to h2SO4, whatever the mechanism, is depen-

dent on the level of concentration fluctuations. In most current

moxels, it is assumed that the ratio in (6) approaches zero asymptoti-

cally, and thus that the bulk reaction rate can be determined from data

without concentration fluctuations. Our simple reasoning supports this

conclusion. The data of Fackrell & Robins (1982) and of Csanady

(1967a, b) are ambiguous: they appear to indicate approach to a non-

zero constant, but do not have sufficient streamwise extent to exclude

the possibility of ultimate approach to zero.

These are the essential qualitative features of plume dispersal

that a good model should be able to reproduce. In what follows, we

will examine some of the properties and limitations of the second order

model, and will present some preliminary calculations of dispersal from

a line source in homogeneous, isotropic decaying turbulence.

2. Pope's Problem

Pope (1983) has pointed out that the exact equations for a passive

scalar additive are linear in additive concentration, so that fields

from different sources are superposable. Because of this linearity, a

field of several passive scalars with the same diffusivity may be

recombined in arbitrary linear combinations without changing the equa-

tions. p.



.'

The usual second order equations do not have this property, how-

ever (Lumley, 1983a, b). The equations for thermal dissipation are not

homogeneous of second degree in additive concentration, and hence

fields from different sources are not simply superposable, nor can sev-

eral fields with the same diffusivity be combined arbitrarily. The

equations for the second moments used by most workers are linear, since

the coefficients used in the pressure-concentration gradient terms are

constant. however, these forms do not satisfy realizability (Lumley,

197b, 1984a, b). If the forms are modified so as to satisfy realiza-

bility (Luniley & Mansfield, 1984), they are no longer linear, and hence

not superposable either. Shih (1984) has suggested a modified form of

the realizability condition, which permits superposability, and satis-

fies realizability weakly, but which does not reproduce system behavior

near a limiting state. That is, suppose that u1 and e are nearly per-

fectly correlated. It is possible to solve exactly for the behavior of

the system n,.ar this condition, and the strong realizability condition

reproduces this behavior, while the weak condition does not.

No simple solution for this difficulty presents itself. The dif-

ficulty, in all the equations, is the concentration time scale, <e2>/

<e >. If this time scale is assumed to be the same for all the

fields, then they may be superposed, and different fields can be com-

bined linearly. A basic assumption of the second order modeling is

that the field of a particular variable can be complete described by

the scales of the energy-containing range, or in other words, that the

spectrum is simple. A superposition of two scalar fields having dif-

ferent time scales, or a linear combination of two such fields (which 4

is the same thing) no longer has a simple spectrum, and hence cannot

reasonably be described by equations having a single time scale.

While it is possible to construct multiple time scale models, they

become extremely complex, and it is not clear that it is worth the

effort; probably a large eddy simulation would be more sensible. The

practical question is, how much does it matter? That is, many disper-
sion situations in the atmosphere involve multiple sources of differing

sizes, so that the concentration field consists of the superposition of

a number of fields of different time scales. In attempting to describe

this combined field by equations having a single time scale, necessari-

ly a compromise everywhere, how much error is made, and where is the

error worst? In this preliminary study we present (below) calculations

for a single source, with and without a decaying isotropic homogeneous

background field of different time scale. We will find that, although

the model is not superposable, the results of the calculation of the
combined fields is not significantly different from the superposition
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of the two fields. The true time scale of the superposed fields is the

energy-weighted average of the time scales of the individual fields,

and the model computes something approaching this.
In the second order models, the part of the pressure correlation

that is not a transport term is customarily split into a so-called rap-

id term, and a return-to-isotropy term (Lumley, 1978), corresponding

repectively to the part of the pressure linear in the mean velocity

gradient (or the buoyancy), and the part quadratic in the fluctuating

velocity. We have been discussing the form of the latter, since in a

homogeneous turbulence without mean velocity gradients or buoyancy, the

rapid term plays no role. In shear flows and atmospheric flows, how-

ever, the rapid terms are extremely important. As pointed out in

Lumley (1978), the models for the rapid terms in general use do not

satisfy realizability, although they do satisfy superposability.

Attempts to make these terms satisfy realizability (Lumley, 1978)

have resulted in their violating superposability. Recently, however,

Shih (1984) has devised forms for the rapid terms which satisfy realiz-

ability exactly, and satisfy in addition the requirement of superpos-

ability. The key is the fact that, while the time scale of the return-

to-isotropy term is the spectral transfer time scale, the time scale of
the rapid term is determined by the mean velocity gradient, or the

buoyancy. Hence, this time scale does not change when two fields are

combined. If the rapid terms are represented as general functions of

momentum and heat flux, and all conditions of symmetry, incompressibil-
ity, and normalization are applied, as well as realizability relations

% between the velocity gradient and buoyant rapid terms in the Reynolds

stress and heat flux equations, together with the requirement of super-

posability, it is possible to unambiguously determine all coefficients.

Another interesting situation arises in connection with the cross-

dissipation, if we have several scalars. Two scalars are enough to

illustrate the point. Consider scalars 8 and *. Each has a dissipa-

tion <co> f y<O,io,i>, <co> = U<,i,i> (where a comma
denotes differentiation with respect to the space copordinate, we use

the Einstein summation convention, and angle brackets indicate an

ensemble average. The cross-dissipation is <coo> 0.5(y +

N)<8,iO,i>. Realizability requires (Lumley & Mansfield, 1984) that

<ego> = 0.5<0o>(<ce>/<e2> +

if <e2 ><O 2 > - <Of> 2 . 0 (7)

On the other hand, superposability, or the straightforward application

P of Schwarz's inequality, requires that

<e>< 0> - <C60> 2  > 0 (8)
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at least for the case of equal diffusivities. These two requirements .

do not appear to be in conflict. Eq. (7) may be satisfied by setting e

<ee> equal to the right hand side multiplied by f(p2 , r') under all

circumstances, where P 2  = <>2/< 2><02>, and r' =<ce><€2>/

(€><62 >, with f(l, r') = 1, f > 1. Then we obtain to satisfy both

requirements 1 < f2 < 4/p 2 (/r' + li//r') 2 . Note that we must have r' =

1 if p 2 = 1, and the right side of the inequality must not be less than

one; the equations must be arranged to produce this, and no clear way

of doing so has presented itself.

3. Equations, Model and Initial Conditions r

We will present here calculations of the dispersion of a line

source in homogeneous, isotropic turbulence with and without a decaying •

" background thermal field of different time scale. In the case without

the background, we will attempt to reproduce the data of Warhaft

(1984). The model is essentially the same as that presented in Shih &

Lumley (1982). The basic equations are

U~x<O> + 3y<eV> y 2 y<O>

(9)

Uax<e 2 > + 2<Ov>3y<O> + ay<02v> =-2<co> + y<2 82>

(10)

uax<ev> + <v2 >y<O> + ay<ov2> = F + Y32y<ov>

U=x<q2> -2<> . .

(12)

U}x<t= -*0 4<>
2 /<q 2>

(13)

Uax<ce> + ay<cev> -*<ce> 2/<

(14)

where U is the mean velocity, and F contains the pressure gradient -

temperature correlation. To close this set of equations we need models

for <e 2v>, <8v 2 >, F, *0, *0 and <eev>.

We will use the models for these terms used in Shih & Lumley

(1982) with the exception of certain small changes introduced in Lumley

& Mansfield (1984). Note that a number of misprints in Shih & Lumley

(1982) have been corrected here.

F = 0.2ay<eq 2 > - Ce<*v><c>/<q2> (15)

= 1 + r + (1.1 + 0.55Tanh[4(r-1)]}(8 - l)FDl/2  (16)

FD ( 2 - 2)/(1 - p2 /3) 3  (17)
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ap= <Ov>l(<e 2 ><v 2 >)1/2 (18)

r = <e><q2>/<C><82 > (19)

0= 14/5 + 0.98exp[-2.83R,- 1 /2 ]  (20)

0= 2 - (2 - *0 )/r + 2.05<ev>3y<0>/<EO> (21)

<02v> = -[<V 2 >ay<8 2 > + 3y<ev>2 ][<8 2 >/<cE>]/2(1 + ,e/r) (22)

< = -[-<q 2 8>(8 - 2)/3 . 2<v 2 >(<q 2 >/<>) y<ev>]/($ + 2f') (23)

<eq2> -[<v 2 >ay<ev>l[<q 2 >/<E>]/(1 + *O) (24)

22 2
<rev> = _(<e2 >/<ce>)[1/2(l + ,e/r)][<v >ay e8 >](l + p2) (25)

0 = 2 + (8/R.l/2)exp[-7.77/RL1 / 2 1  (26)

It should be emphasized that the expressions for the third moments are

derived from first principles and contain no adjustable constants. The

coefficients appearing in them are the relaxation coefficients for the

momentum flux (zero in this flow) and heat flux, which are determined

in homogeneous flows. The way in which these expressions are derived

is somewhat like non-equilibrium kinetic theory of mixtures, where the

variances and fluxes play the role of the various species. It also

resembles in many respects the two-point EDQNM closure (Eddy Damped
OW

Quasi-Normal Markovian; Orszag, 1970), which also has only one undeter-

mined coefficient, which must be evaluated from the spectral constant

in a homogeneous flow. The various other models are not so firmly

based, but are for the most part dictated by the requirements of real-

izability. This model reproduced virtually within experimental error

the data of LaRue et al (1981); all constants were optimized on other

flows (Shih & Lumley, 1982).

The mechanical turbulence measured by Warhaf t (1984) obeyed the

following law:

<u2 >/U2 = 0.121(x/M)-l. 4, v2 >/U2 = 0.076(x/M)-l. 3 2  (27)

Despite the slight anisotropy, slowly shifting along the tunnel, the

energy <q2 > decays as (x/M)-l. 3 5 with variation only in the fourth

significant figure of the power. Since our purpose here is to examine

the temperature transport, rather than to improve the interpolation

formula for *0, we have arbitrarily taken *0 = 3.48, which gives the

observed decay. The interpolation formula (20) gives a value slowly 1%
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shifting from 3.60 to 3.54, corresponding to decay exponents of 1.25

and 1.30. Equation (20) was optimized on the data of Comte-Bellot &

Corrsin (1966) (see Lumley & Newman, 1977), which were taken at higher

Reynolds number for the most part.

We show calculations for three runs, with the source placed at

x 0 /M = 52, 52 and 20. In the three cases the initial profiles are at

values of x'/M = 0.36, 8.1 and 17 respectively. x'/M indicates dis-

tance from the source. The calculations extend to distances of x'/M =

8, 100 and 133 respectively. For simplicity, we will refer to these as

Cases I, II and III respectively. They correspond exactly to the sin-

gle-source measurements of Warhaft (1984).

From the basic equations, it is clear that the value of <Ov>

(specifically, the slope at the centerline) determines the rate of

decay of the centerline value of <0>, and that by adjusting the value

of <e 8 > we can control the initial rate of decay of the centerline

<02> (which is influenced only by this term and the transport). Hence,

we can select the initial conditions so as to guarantee that the cen-

terline values of <0> and <02> begin with the right value and slope.

Whether they will continue to follow the experimental curves depends on

whether the parameterization of the various terms is correct.

If it is assumed that the various profiles are self-preserving,

which will allow us to obtain a crude estimate for <6r>, we may obtain

<6v> = v'e 0 g(n), <0> = 80 F(fl)

g(n) = -[U3xe0Ze/v'e0JnF, or <Gv> =-[Uxn(e0)Jy<> (28)

where we have used conservation of heat, and 00 is the centerline value

of <0>. The requirement of self-preservation also gives

ax(I/O O )  a V' (29)

Equations (28) and (29), together with the experimental data, allow the

determination of <By> at the initial location. This was satisfactory

for cases II and III, but for case I the initial value of <Ov> had to

be adjusted empirically to give the observed initial slope of <0>.

This is not surprising, since case I is very far from self-preserving.

The initial curves for <0> and <02> for each run were taken from analy-

tic or spline (for <82> closest to the source) fits to the data. We

took r constant across the flow, so that <O> = r<O 2 ><c>/<q2 > initi-

ally.

. For the plume with a decaying background field, we simply added a

uniform <e2>1 to the initial <02>0 for the plume. This assumes that

• the plume temperature fluctuations and the background temperature fluc-

tuations are initially uncorrelated. The background temperature fluc-
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tuations are taken to have r - 1, so that they might have been produced

by a heated grid. From the definition, we can write

r = [ro< 2 >0 + r1 <62 >]/[<e2>o + <e2>l] (30)

which assumes that initially the dissipation scales of the two fields

are also not correlated. From this we obtain the initial <ee>
values.

4. Results and Discussion

Following figures 1, 2 and 3 [where, for comparison, we have

reproduced the profiles of normalized r.m.s. temperature for Cases I,

II and III from Warhaft (1984)], the figures are in pairs, each pair

referring to a single case. In each case, the first figure gives the

evolution of the centerline values of the mean temperature profile

[values from curves faired through Warhaft's (1984) data are open cir-

cles], and of the ratio of the centerline value of the r.m.s. tempera-

ture profile to that of the mean profile [Warhaft (1984) = eight-point-

ed stars], and the half-widths (at half the centerline value) of both

the mean temperature profile [Warhaft (1984) = five-pointed stars] and

the r.m.s. temperature profile [Warhaft (1984) = closed circles]. The

second figure of each pair gives the profiles of the r.m.s. tempera-

ture. The values of x'/M displayed are the same as the measur.'ments of %

Warhaft (1984). In all cases the mean temperature profile is approxi-

mately Gaussian in both experiment and calculation, so that we have not

reproduced them here.

From the first pair of figures (4 & 5), it is clear that case I

lies largely in the regime in which the instantaneous plume is below

the Kolmogorov microscale in width, so that spreading is by molecular

action. Because molecular spreading is so important to this case, we

.[ have included the molecular effects in the equations, although they

- will be negligible in cases II and III. It is evident that so close to

.* the source, the data are not reproduced well. The mean temperature and

the width of the mean profile are satisfactory (as they are in all the

cases); but the evolution of the ratio of centerline r.m.s to mean, and•r

the width of the r.m.s. profile, are poor; the details of the r.m.s.

profiles are not well-reproduced. The off-axis peaks decay much too

fast. The reason for this is probably that the transport model used is
appropriate for quasi-homogeneous situations, and particularly situa-

tions in which intermittency is not vital. Very close to the source,

of course, gradients are very large, and intermittency is dominant.

Hence, transport is probably underpredicted. Since the initial time

scale ratio is adjusted to give the proper initial slope of the evolu-
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';M Figure 1. Case I. r.m.s.
0.36 temperature profiles normal-

+ 0.62 ized by the centerline r.m.
1.2- a 1.0 s. values, from Warhaft

,1 0 1.82 (1984). The wire was at
.0- 0 3.8  x0 /M = 52. For these meas-

urements close to the wire,
. / + a .025 mm wire was used.

0.8

0.4 4%

0.2- (18) Th1ir0asa

+ .+

.:._ _0_ _ _ _", me e a,01 7 m

" * 30

0.8 0 60"

0.8 -. 33
0.6 Figure 2. Case II. r.m.s.
0.4 temperature profiles nor-• ~0.4• "

malized by the centerline
values, from Warhaft (1984).

0.2 (1984). The wire was at 0.
b) X 52. The wire dea-

4 Imeter was 0.127 mm. 7'-:0 -3 " I 0 I 2 3 : {,". .

":.0 'I:0 -7
0 63

0.8- " 133""

, 0.6 ,/" '
tC uf" Figure 3. Case III. r.m.s. f

04 temperature profiles nor-
t t ms smalized by the centerline to

0 2 t values, from Warhaft (1984 he
data.a i te c uThe wire was at x M= 20. -'.
i te ni rs, oeoiThe wire diameter wasidth:''.. 0 0 . 127 mam. ".-

14 2 0 2 4

. .'

,:..:<ce> is probably too high, resulting in too rapid decay of values of ' :"

.-.. r.m.s, temperature. . .
"i~i'.In figures 6 & 7 we have case II. It is evident that this case 1%

sill1 begins in the regime in which the instantaneous plume is thinner ,
• ".' than the Kolmogorov microscale, since the ratio of centerline r.m.s, to "
' mean temperature is growing initially. We can see here, both in the
' o data and in the computations, the decrease to a constant value (follow-
, ing the initial rise), corresponding to the instantaneous plume width
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I Figure 4. Centerline temper-

---- AN TgKFIATURE 0 ature evolution Case 1

F V1 61 or *S TEUP

\1 /0

0 %

DOWNSTREAM DISTANCE

---fm 1E A

1.2

.1FigureS5. Rms at X/M =0.36,

-1.3 -0. DISANC FRM CETERINE0.6, 1.0, 1.82, 3.8, 8.0
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1.0 ---'IFuw V T C I

1.2

Figure 6. Centerline temper-
-* ______________________________ ature evolution Case 2

V-02 2 036 It or Is I$ I0 I
DOWNSTREAM DISTANCE

beginning to spread inertially. Again, the centerline mean temperature
and width are well reproduced, while the ratio of centerline r.m.s. to

mean decreases too fast. This is probably a result of the same mechan-

ism already seen in case I. The curves of normalized r.m.s. tempera-
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Figure 7. Rms temp profiles
at X/M=8, 30, 60, 100

.7

r / D!TANCE FROM CENTERLINE

ture are not badly reproduced, although the appearance of off-axis

peaks as the instantaneous plume grows to a substantial fraction of the

mean plume width is perhaps a bit premature.

To determine whether our hypothesis (above) were correct, we arti-

, 7..

ficially increased all the transport by 10%, decreasing the dissipation

,U|

by a corresponding amount. The results are shown in foigures 8 & 9

(also for case i1). It is evident that the trend is in the right

direction; the off-axis peaks are suppressed (perhaps too much), and

the decay of the centerline value of the r.m.s. temperature is substan-

tially slowed. Of course, this artificial increase in the transport

does not produce a transport of the right structure, to correspond to Eli

intermittency. We intend in the future to introduce some of the inter- .J

mittency corrections developed for other purposes (Chen & Lumley, 1984;

Dancey, 1984).

In figures 10 & 11 we present case III. Here it is clear that we

begin in the inertial range, since the ratio of centerline r.m.s. to

1.4-

4~ 

.
1' % am

,44

O I __"O______oature evolution Case__ Figure 8. Centerline temper-
DOWNSTREAM DISTANCE aueeouinCs
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I Figure 9. Rms temp profiles at X/M=
-TEM 8.1, 30, 60, 100

.1

4A

'4

2: T T-, -: -a o a , a
DISTANCE FROM CENTERLINIE

1.2*

1.4. .O*N1[@Rl'~[..I

., .. Figure 10. Centerline temper-

.10_____O_ STEAM_______T
__________0_______Oature evolution Case 3

1. 20 30 40SOSOf so to IN lir 4
DOUINSTREAN DISTANCE1.1 Sw>

_ ---MS TENP/%' 
•%i-

•-'o 6 Y'W

. 4,

Figure 11. Rms temp profiles

-- - at X/M=17, 63, 133

DISTANCE FROM CENTERL INE

mean temperature is initially decreasing. Now all centerline values

and widths are well reproduced, and the curves of r.m.s. temperature "s"

are all well reproduced, with the possible exception of the slightly

too-prominent off-axis peaks.
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2. --- 16ME IInRATUK Figure 12. Centerline temper-

--ILog ACO MEA Tie ature evolution Case 3
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.I / /Figure 13. Puns minus back-
ground at X/M=17, 63, 133
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In figures 12 & 13 we present case III with a background r.m.s.,,-
temperature fluctuation level of 10% of the peak value in the plume, '

and in figures 14 & 15 with a background level of 30%. In both cases,

to determine the centerline values and half-widths, we have subtracted . .

the background. It is clear that, although the model is not formally .

superposable, the difference between the results and a simple superpos- 'o

. ton is very small at the 10% level. At the 30% level the half-widths'":~/"

" , and centerline values are worse, but not disastrous; the r.m.s, pro- ".

,'* files, however, have a bizarre appearance. This is largely an artifact

of the presentation. At x'/M - 133, the peaks of the plume are only :

20% above the background, and the centerline value has nearly reached!

.,.

the background level. When the background is subtracted, and the

result devded by the e eenti ca value, the curious appearance

results. It is undeniable, however, that the peaks are too large rela-

tive to the centerlne, and that the centerlne is decaying too fastubrate

ttMally
. .. I "N

, .. ,, up.. rposab.le. the. difference.-..-..., between ,...,.-...,.. .. the-reslts.an a.simple s er--...-,.-,,-,%,...,.



a. Figure 14. Centerline temper-
. OK. ature evolution Case 3
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.e . -- ground at X /M ff17 , 6 3 , 133 ..LDISTANCE F DS CENTERLINE

F. Conclusionsi.5.mu a

We may conclude that the second order model outlined in Shih &

Lumley (1982) is quite satisfactory for describing the evolution of

plumes that begin in the inertial range. Modification of the transport

will be necessary to describe plumes which are initially thinner than

the Kolmogorov microscale; it seems likely that a correction for inter-

mittency will help in this regime. Since the majority of plumes that

one is called upon to calculate in geophysical situations begin well

into the inertial range, it appears probable that the model as formu-

lated here is more than adequate for the description of geophysical

phenomena.

The performance of the model in this regime in the presence of

overlapping temperature fields of differing time scale may be regarded

as satisfactory as long as the magnitudes are very different. Evident-

ly the lack of formal superposability in the model may not be as seri-

ous a concern as had been thought, at least under these circumstances.
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Of course, we present here a situation in which the two temperature

fields, although their time scales are quite different, are initially

uncorrelated, and can never develop a correlation, as one can easily

show from the equation for the cross-correlation. The situation is

more complicated if the fields are correlated. This is the situation

described in Warhaft (1984), in which plumes from adjacent sources

interact. In a future paper, we will attempt to calculate this case.

We will, in addition, make calculations for finite sources, to explore

the effect of source size on temperature variance.

Acknowledgments

We are grateful,for the help and encouragement of our colleagues
S. Leibovich, S. Pope, T.-H. Shih, and Z. Warhaft.

References

Chatwin, P. C. & Sullivan, P. J. 1979. The relative diffusion of a
cloud of passive contaminant in incompressible turbulent flow. J.
Fluid Mech. 91: 337-355.

Chert, J.-Y. & Lumley, J. L. 1984. Second order modeling of the effect

of intermittency on scalar mixing. Proceedings, 20th International
Symposium on Combustion. In Press.

Comte-Bellot, G. & Corrsin, S. 1966. The use of a contraction to
improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25:
657-682.

Csanady, G. T. 1967a. Concentration fluctuations in turbulent diffu-
sion. J. Atmos. Sci. 24: 21-28.

Csanady, G. T. 1967b. Variance of local concentration fluctuations.
Physics of Fluids Supplement: S76-S78.

Dancey, C. 1984. The Effect of Intermittency on Scalar Mixing. Ph.
D. Thesis. Ithaca, NY: Cornell.
Durbin, P. A. 1980. A stochastic model of two-particle dispersion and
concentration fluctuations in homogeneous turbulence. J. Fluid Mech.

100: 279-302.

Fackrell, J. E. & Robins, A. G. 1982. Concentration fluctuations and
fluxes in plumes from point sources in a turbulent boundary layer. J.
Fluid Mech. 117: 1-26.

-LaRue, J. C. , Libby, P. A. & Seshadri, D. V. R. 1981. Further results
on thermal mixing layer downstream of a turbulence grid. In Third SyM-
posium on Turbulent Shear Flows, ed. L. J. S. Bradbury et al, pp. 15.1-
15.6. Davis: U. of California.

Lumley, J. L. 1978. Computational modeling of turbulent flows. In
Advances in Applied Mechanics 18, ed. C.-S. Yih, ppl23-176. New York:
Academic.

Lumley, J. L. 1983a. Turbulence modeling. J. Applied Mech. 50: 1097-
1103.

217



Lumley, J. L. 1983b. Atmospheric Modeling. The Institution of Engin-
eers, Australia: Mechanical Engineering Transactions. ME8: 153-159.

Lumley, J. L. & Mansfield, P. 1984. Second order modeling of turbulent
transport in the surface mixed layer. Boundary Layer Meteorology. In
Press.

Lumley, J. L. & Newman, G. R. 1977. The return to isotropy of homogen-
eous turbulence. J. Fluid Mech. 84: 581-597.

Orszag, S. A. 1970. Analytical theories of turbulence. J. Fluid
Mech. 41: 363- .

Pope, S. B. 1983. Consistent modeling of scalars in turbulent flows. .

Physics of Fluids, 26: 404-408.

Shih, T.-H. 1984. Second Order Modeling of Scalar Turbulent Flow.
Ph. D. Thesis. Ithaca NY: Cornell.

Shih, T.-H. & Lumley, J. L. 1982. Modeling heat flux in a thermal mix- t
ing layer. In Refined Modeling of Flows, Vol. I (eds. J. P. Benqud et
al). Paris: Presses Ponts et Chausstes, pp. 239-250.

Warhaft, Z. 1984. The interference of thermal fields from line sources
in grid turbulence. J. Fluid Mech. 144: 363-387.

""

21

-V



Acoustic Wave Propagation in Fluids
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The classical viscothermal problem of infinitesimal, planar

acoustic-wave propagation in a single-component Newtonian fluid is

extended to more general multicomponent materials that are diffusive,
reacting and viscoelastic. The attenuation and dispersion of the sound
wave are determined by solving the linearized (first-order) equations

of mass, linear momentum, energy and chemical kinetics. General

results are obtained in the form of a biquadratic characteristic

equation (called the Kirchhoff-Langevin equation) for the complex

propagation coefficient 1X-6L%/IC), where oL is the attenuation

coefficient, C is the phase speed of the progressive wave and ) is

the angular frequency.
First, the case of a single-component Newtonian fluid is examined.

Then the problem of a nondiffusive, equilibrium mixture with coupled *

chemical reactions is considered. Next, the effect of diffusion on ,

acoustic wave propagation in a binary, nonreacting fluid is treated,

and results in a sixth-order characteristic equation for Z. Then the

precise theory for predicting attenuation and dispersion of a plane

sound wave propagating in a single-component viscoelastic fluid is

developed, where the response of the stress-tensor is represented by

Noll's simple-fluid theory which incorporates the memory of the

material. Finally, a combined treatment unifying the theories for the

effect of viscoelasticity and reactions is presented. Calculated
results and experimental measurements are compared for different

classes of materials where possible.

1. Introduction

The theoretical prediction of acoustic wave propagation in fluids

is important for understanding medical diagnostic and sonar performance

characteristics, for measuring physico-chemical and thermostatic

properties of fluids and for examining constitutive relations. The
I P, purpose of this paper is to present a fluid dynamical theory for

examining a wide variety of acoustical classes of materials, including

polymer solutions which exhibit non-Newtonian viscous behavior (or
'.2.1 .
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memory effects) and chemical reactions. Here we introduce the forced

small-amplitude acoustic wave propagation problem.

Given a semi-infinite homogeneous fluid otherwise at rest, the y,
z plane of fluid is oscillated harmonically in the x-direction with i

frequency f as shown pictorially in Fig. 1.1.

ii X= Complex Propagation Constant
U Lij

a = Attenuation coefficient

I = lo exp [-(a + i.x + iwt] w = Angular Frequency 1= 2 nf)

c= Sound Speed

Fig. 1.1 Forced sound wave propagation in a fluid

The displacement of the plane boundary and resulting longitudinal wave

motion within the fluid is assumed to be infinitesimal. The wave
amplitude progressively diminishes with transmission distance as the

mechanical energy which is imparted by the boundary surface is
dynamically converted into thermal energy. This analysis assumes that

the actual motion is well approximated by the exact solutions to the

first-order field equations of the mixture, in which all nonlinear v-..

terms are omitted, and moreover, all coefficients are evaluated at

their uniform equilibrium reference values.
The total value of each variable, I, in the list of system

variables chosen to define this one-dimensional perturbed motion is

decomposed into an equilikrium (static) and time-dependent incremental

acoustic contribution.
Total = (Static a Acoustic)

\Variable Io kVariable) + Variable) (1.1)

Furthermore, each acoustic variable, Ma, such as pressure

temperature e6, or velocity V* is represented as a damped sinusoidal

progressive wave by

..JRReL -rC c~xc 4 Aw' (1.2)

,-aL k) is the complex propagation variable where M is the spatial

absorption coefficient and k is the magnitude of the wave number
vector perpendicular to surfaces of constant phase. ke=w/c is the

spatial analog of frequency and r,:presents the number of wavecrests per
unit length, or simply zTr multiplied by the reciprocal of wavelength

in this one-dimensional problem. Absorption and dispersion measures
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are found by solving the appropriate balance equations and constitutive

equations for the fluid (or mixture) under study. Exact solutions are

sought, in the analyses in order not to preclude the interactions among -

the various dissipative mechanisms that contribute to an increase of

the entropy, rather than using an approximate approach that relies ..

solely upon the energy equation and omits dispersion estimates. ,'

The paper is arranged as follows. First, we will examine the

exact treatment for solving the small-amplitude, sound wave propagation

problem for the classical Newtonian viscous and Fourier heat-conducting V.
fluid. Then the acoustic problem will be extended to account for ! :

several coupled reactions which occur simultaneously in a nondiffusing '

mixture. The viscothermal case of diffusion in a binary mixture of

fluids (without chemical reaction) is also presented. The next part of
the paper will develop the precise theory predicting attenuation and

dispersion of a plane sound wave propagating in a single-component,
non-Newtonian medium. Here, the response of the fluid may be

represented by Noll's simple fluid theory which incorporates memory

effects and viscoelastic relaxation spectra. Finally, a combined

treatment unifying the above theories for different acoustical classes

of materials and describing existing experimental data is proposed for
a reacting fluid system with non-Newtonian viscous characteristics.

2. Single-Component Newtonian Fluid

2.1 Continuum Balance Equations

The general continuum field equations for a single component

material are obtained from the balances of total mass, linear momentum,
moment of momentum and energy. Omitting radiation supply, these '

balance postulates are written in spatial or Eulerian differential form

using rectangular Cartesian coordinates as:

-$ (2.4)

(2.4
, v.:C ._ 7 ( .2 . .

where -IT denotes the total derivative (and equals
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+. -- .-- ). S. , b; and h4  denote the components of the

total stress tensor S the external body-force vector per unit mass
b , and h the heat-flux vector, respectively. The specific internal

energy E (per unit mass) is defined as the difference of the total and

kinetic energy densities, and di represents the components of d , the

symmetric part of the velocity-gradient tensor called the

rate-of-deformation or stretching tensor.

Constitutive relations are required to complete the system of

Dalance equations in order to derive the acoustic equations for a

particular class of materials. First, the linear forms of the

constitutive relations representing classical fluids are examined.

Here, classical means that the response of the material depends only

.a upon the present values of the field variables. Viscoelastic models

for materials which exhibit memory effects, for example, are excluded

from this class but will be considered in a later section.

The classical constitutive relations considered may be explicitly

written for:

1) the stress relation as a homogeneous, linear,

isotropic function of the stretching tensor, d, where 2d= grad x +

(grad x) ; that is,

= . ~s~ .Z'~4 (2.5)

where p = pe ,r ) is the pressure; ' is the coefficient of shear

viscosity or first coefficient of viscosity, A. is the "dilational" or

volume coefficient of viscosity or the second coefficient of viscosity,

and If =!LIP is the specific volume. The stress tensor can be written

in the equivalent form:

. ( . (2.6)

where <d.. > is the traceless part of d; i.e.,

<d- >- dt S, and K. is called the bulk viscosity of the

fluid, K A.+ This constitutive relation for the stress

tensor defines a linearly viscous or Newtonian fluid and satisfies the

moment-of-momentum equation (2.3).

2) the heat in-flux vector is represented as a linear function of '

the temperature gradient, '..%
(2.7) I

where is the thermal conductivity tensor. This is often referred

to as Fourier's law of heat conduction.

3) An equation of state E (9, 6 or q) (0,r needs to be

specified. P is the specific Helmholtz free energy 4 '= E- )



which is a function of the temperature and specific volume and 1

is the specific entropy function. Alternatively, the function

called a caloric equation, may be used for the equation of

state. Further, the following relations hold:

e( EL) Z7 (2.8)

These relations are consistent with the basic principles of continuum

mechanics which was demonstrated by Coleman and Mizel [1].

Now, using (2.4) and (2.8), obtain

(2•+ (2.9)

Since TZ -(&/& , (2.9) becomes

.1T;-_ ', % + (2.10)

- which is the entropy equation. This can be written in terms of the

S".temperature field G(a7,t), thereby introducing standard thermodynamic

parameters such as heat capacities for which experimental data have i

been tabulated for specific substances.

Consider t, r' , hence -

where

a~r
and

Furthermore,

4= eC/,' ,"e( "./

bAA

2. ______7_/

where Ce is called the 'reference speed of sound'. Therefore, using

these relations and Fourier's form for the heat-influx vector, (2.10)

becomes
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2.2 The Linearized Acoustics Equations

The balance equations may be systematically linearized by

replacing the total variables, say temperature 0 , pressure pr

velocity v and density ('by the sum of an equilibrium part and the

incremented acoustic contribution (1.1). Products of acoustic

variables (written with a superscript "a") which appear explicitly are

omitted. For infinitesimal waves propagating into a fluid at rest

(v, & 0) with a uniform equilibrium state, the linearized balance

equations for a Newtonian viscous, Fourier heat-conducting fluid

become:

v a.., +

0 (2.11)

+ (2.12)

. c.c'.

C')S

C'0 -~f (C-$ - i- o (2.13)

which are usually referred to as the first-order acoustic equations

(neglecting radiation supply and body forces). Here ± and I."

we define V. ,) as the "acoustic viscosity".

To solve this system of three linear partial differential

equations in terms of v and *, the nonlinear dependence of

pressure on the other thermodynamic variables is linearly approximated.

small change in and 9 in is given by

' % = = 4 r (" .(2 .1 4 )

Also, ..

and

I is called the adiabatic compressibility and ,the

ratio of specific heats, can be written as:

~~~224 + ""
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where is the 'isothermal compressibility' and is

the 'isothermal expansion coefficient'. Thus the linearized equation

of motion in one-dimension ex) becomes:

V , ,. rc e 'v
at ar Ir(2.15)

2.3 Kirchhoff-Langevin Equation

An exact solution of the complete first-order equations for forced

monochromatic plane waves in Newtonian fluids has been given by

Truesdell [2). At x 0, any acoustic variable, I. , is represented by

the real part of cry E" Q CLJ±) . This disturbance is propagated

through the material as a damped harmonic oscillation

_T% V - - -k& . Assume solutions of the form

4 - ' (2.16)

and substitute into (2.11), (2.13) and (2.15) to obtain:

LcJ . e. z -- o

-X - -4 :::

1*0 (2.17)

Nontrivial solutions exist if and only if the determinant of theI

coefficients of these algebraic equations vanishes. The values of "

are found by solving: "-
A.. LO~ 0
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The characteristic equation formed in this way results in a biquadratic

equation in the dimensionless complex propagation variable -Y-/1 which

can be solved by using the standard "quadratic formula."

Truesdell [2] has also written the characteristic equation in

terms of dimensionless parameters which specify the properties of the

medium as discussed below. In addition to %X and the three variables

(V. ,' and &.), there are nine parameters that define the acoustic

behavior of the material at angular frequency C . However, only eight

of these parameters are independent since we have the thermodynamic

identity

Therefore, only eight parameters are independent: WJ, C,6 , s ,
K , , Cr and C, . Since each of these can be expressed in

fundamental units such as mass, length, time and temperature, it

follows from the pi-theorem of dimensional analysis [3] four

independent dimensionless ratios can be formed. The dimensionless

propagation constant may be expressed as:

The first dimensionless parameter is or the ratio of specific heats,

and the third ratio is recognized as the Prandtl number ( P). The
second ratio is incorporated into a dimensionless quantity called the

viscosity number defined as: I

w Z =/-

hence A /5 / The fourth group of parameters is called the Stokes

number (S.). Now

In dimensionless terms, Truesdell [21 obtained the following equation

for the dimensionless complex propagation constant %Ik.

- L''IJ'~ o'~(2-.18)

It was found convenient to define X.' 3- and Y = C1 ). The

result is called the Kirchhoff-Langevin biquadratic equation in
recognition of Kirchhoff who formed a secular equation in this way for . .

perfect gases and Langevin who considered a fluid with an arbitrary
equation of state [4].
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The dimensionless groups are summarized below:

Heat capacity ratio I C/C-..

Viscosity number Z 2"4- £4 k "v1

Stokes number S - " /e°'i

Frequency number X = ,-"

Thermoviscous number Y.= (p -r"

Frequency number (K, =0) X''- 8" f./ .,

"16"

Prandtl number P-- 4 c - ti /".

The problem has been reduced to finding the function:

where the inner brackets are dimensionless groups representing the

fluid, and only Xa contains the frequency of the sound.

Each Newtonian fluid is represented as a point in the physical

property space <()Y 4  . The real part of * lk corresponds to
U fxd and the imaginary part corresponds to I/ = k, which for each
fixed value of OrY..d'> are continuous functions of X , the frequency

number. Therefore, the absorption coefficient and sound speed can be A

precisely calculated from the Kirchhoff-Langevin equation and tabulated

for each fluid with frequency or Xw as the variable.

The range of the physical property space is given by:
ee& Jr and Y . For most fluids, a"- . Liquid argon is an
exception [ 5].

The standard quadratic formula can be used to solve for (k./-)

X.. Y. eal

5 (2.191)

which gives an expression relating d. and k to the three independent

parameters X , I , and Y. Each parameter in (2.19) occurs in one

or more product combinations, and hence it cannot be generally assumed

that the effects of viscosity and heat conduction are linearly

additive. Therefore, the practice of determining contributions from

these effects separately, and superimposing the results must be

justified explicitly and quantitatively.

, , • .% • • . . . . . • . . .. . .. ... °. ... °"€':-.€' ,":.". .'' ';'::"'?; "',' i "'"" • " "'. . ','+.¢ ZLZ .,_'*.'. '""''." .: :



Equation (2.19) has two pairs of non-coincident complex roots:

2. (2.20)

and
(ILI( 4 ....~ Lu~l2- (~ba)4 (2.21)

Here the curly brackets lj means the principal determination of the

square root. Now, only those solutions which yield positive values for %

L, corresponding to real attenuation, were retained. The two

solutions (2.20) and (2.21) comprise the two branches of a complexS 
t 

.,

square root; one branch pertains to typical compressional sound waves

identified as type I, and obtained from (2.20); the other, the lv.
so-called thermal waves referred to as type II are obtained from

(2.21). One is not completely justified, however, in describing these

simply as 'pressure' and 'thermal' waves, since all field variables are

simultaneously perturbed and propagated by each wave type; and both

types of waves are always propagated by any source. On the other hand, U
the absorption and dispersion characteristics of types I and II waves

* will, in general, be quite different. Type II waves are more rapidly

attenuated than type I waves and have not been observed in any

experiment to date.

Clearly the calculated results for 0.. and c are not easily

interpreted, because of the algebraic complexity of the equations.

However, power series expansions do provide explicit formulae that are

valid over certain ranges and can be readily examined for physical

content. However, to establish the range of validity of any series

expansion, as well as the analyticity of (bo['% with respect to
<JY.> and X, , Truesdell (2] examined carefully the branches of -A

(2.18) and (2.19).

The amplitude attenuation per wave-length A, was defined as:

and in a similar manner the amplitude attenuation per reference

wave-length. A. was defined as:

_.., ~A,, =.. -'-..

These are standard measures of absorption, while SE e a (C/ the

square of the ratio of the actual speed to the reference speed, is a

measure of the dispersion.

For fluids such that YA in the low-frequency range

X, ..L ), one may approximate (2.21) by
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C. Y..

Thus, dispersion is predicted to be negligible and the absorption

coefficient is given by the 'Kirchhoff' value:

Substituting for k., X, ,, and Y , this takes the familiar form:

= e (2.22)

Using the 'Stokes assumption', viz., k.: . , (2.22) becomes: -.

This form for the absorption coefficient is referred to as the
'classical' or the Stokes relation. Due to the large number of

assumptions and approximations inherent in its determination, it lacks,

in general, the ability to correctly predict the absorption

characteristics of all fluids over a large range of frequencies.

Some of the results of the viscothermal Newtonian theory are

presented and then compared to experimental results to indicate the

inadequacy of that model. The asymptotic limits of the measures of

absorption and dispersion are given in Table 2.1.

TABLE 2.1 V...

Asymptotic Limits of Absorption and Dispersion
Measures from Newtonian Viscothermal Theory

XN -* oxN + -!

A 0 X 00
Ao a 0 0 0.

A= aX 0 2.

(c/c )2 1
0

Since the limits of A. are zero as X.-g and ),-.go, the
absorption measure has at least one maximum, hence indicates a viscous

. relaxation time. Also a consequence of the Newtonian viscothermal

theory is that the dispersion increases indefinitely and is determined I:
2 2..-:



by the viscosity only, since for XdJ4*,",

Using the asymptotic results listed above, Truesdell (2] has noted

the following behavior for the absorption and dispersion measures. 1)

A* experiences exactly one, usually broad maximum that characterizes

visco-thermal resonance and this lies in the frequency range

£4 XJ . 3 . The maximum value of A. will always have the same

magnitude (Ae.t'L); 2) A is a monotone increasing function of X,.

3) The curve of S versus X. is curved positively upward at all

points. These results are exhibited by the curves shown in Fig. 2.1.

h I a/k

0.4 - 0.4c/C

*C0

0.2 0.4

4

9. 0.2

2

o I I I o

2.0 4.0 6.0

Frequency Number X. 
A

Figure 2.1 Graph of absorption and dispersion for classical,

linearly viscous fluid <1,YN) <1.40, 0.25>
N'

Now, in the range of frequencies such that XK,.'4-, the Stokes'

value for the absorption coefficient is the lowest value that can be

calculated by the viscothermal theory, i.e., 1 ( !6) since the

bulk viscosity K. >/ o . There are experimental data for several

fluids where X,44 and ) which must be analyzed using

alternative constitutive relation assumptions. . -

2.4 Approximate Formula %%

For the case of a non-conducting fluid (kO0), X: 0 , the

Kirchhoff-Langevin equation obtains the simple quadratic form:
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i4- .. ,, (2.23)

or
- i zok - .1-a X,4

+4
K,1  (2.24)

If we equate the real parts, obtain
_ 4-0
, x2 " (2.25) -

The order of magnitude of the correction term has been included here to
examine the validity of the approximation that uses the relation:

1A or &A 4i to obtain the dispersion relation:
k.

--+ x .

from (2.25) by neglecting the correction term. On comparing the
imaginary parts of (2.24), obtain

z -(2.26)

For X 4 
".

CL X + 0 X (2.27)

and using (2.25).

VA 0

For small X., the (to/k,)term cannot be neglected and

£ ( .- ' o '±:

X, -(2.28)

or '/,(*) j . jX. o(Xy
JL 4

Therefore

-L C.') -_M _ .- o(x)

vNow using (2.27)

Z.,

.9
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3. Newtonian Fluid Mixture with Coupled Reactions

(Nondiffusive System)

3.1 Continuum Balance Equations

Ultrasonic relaxation techniques have contributed significanty to

our understanding of fast chemical reaction mechanisms in fluids and to

the measurement of reaction parameters (e.g., rate constants) [6]. The

aim of this section is to present a hydroacoustic theory which accounts
for sound absorption and dispersion in a mixture of reacting fluids in

equilibrium, such that several reactions can occur simultaneously. The

theory is applied to several chemical systems using physico-chemical

data available in the literature. The theoretical results reduce to

the Kirchhoff-Langevin biquadratic equation obtained for the classical,

viscothermal non-reacting case.

Here we present the continuum theory involving a perturbation of a

multistep sequence of reactions omitting diffusion and radiation
z. supply. The previously considered field equations for the balance of

total mass, linear momentum, moment of momentum and energy are used in

the derivation. Also, a partial mass balance equation for each

constituent of the mixture must be included. For constituents which

have a common absolute temperature 0 and which can occupy any place

x at time t in the mixture of ( o = 1,2,.. .k) species the balance

equations are written in rectangular Cartesian coordinates (2.1-2.4),

and+ dao.d = W (3.1)

where GK is the molar concentration of the o th constituent. O*.c

equals the moles of c per total mass (mol g- ) and W,, represents the
production due to chemical reactions.

The form of the equation for the mass balance of a chemical
Iconstituent can be rewritten by a change of variables to any other

suitable concentration measure. However, additional terms may arise
due to a chain rule time differentiation of 6 whose neglect or

retention in the equation must be consistent with the analysis. For

instance, in the collisional rate theory of chemical kinetics for

gaseous systems one usually considers ,= , where this form of the
I~%

equation of balance in terms of the molar density (mol cm"s) is valid
only for constant volume systems.

3.2 Chemical Reactions and Their Description %

The acoustic theory is appropriate for a general reaction scheme

composed of j = 1,2,...r coupled reactions. This may be expressed in
terms of the signed stoichiometric matrix, , as follows:

• "IaNfllws
r*. , .€ ; € . , , .. . ,. . .,- - . ..



= o oOK 1, a, .

where the positive values of the stoichiometric coefficients

correspond to the reaction products while negative values correspond to

reactants. Also, by convention, a neutral species such as an inert

solvent is assigned a stoichiometric number of zero. The rank of the

stoichiometric matrix determines the maximum number of independent

reactions or calculated relaxation times. Let rank (Sj ) = R r.

Then the total collection of reaction steps may be completely

represented by an arbitrarily selected subset of R reactions.

In order to express the composition changes during the progress of

a reaction in a nondiffusing mixture, it is convenient to define a

degree-of-advancement variable for each reaction by

,,,L1 + S;; ,

where £ is a reference molar density, say at equilibrium. If . is

the degree of advancement of the jth chemical reaction, it has
contributed Sr (moles g- ) to the total change in the molar

density of the O th component of the mixture. All composition changes 0

may be expressed in terms of these degree-of-advancement variables

corresponding to the chosen R independent reactions. PC

The equation of partial mass balance may now be written

alternatively as

where , he time rate of change of 4 , is called the reaction

velocity and denotes the production term that must be specified.

3.3 Constitutive Relations

A compatible set of constitutive relations is required to complete I
the system of balance equations in order to derive the acoustic
equations for Newtonian viscous, Fourier heat-conducting fluids with

chemical reactions. The linear forms for the stress tensor and

heat-flux vector previously described in (2.6) and (2.7), as well as

the following relations define the material under study:I ) 6 = a(G, ,) for the specific internal energy; and

2) the linear reaction rate by a continuum theory of

thermodynamics for a nondiffusive mixture of fluids is:

V? + = + + '23
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The first term is the classical mass-action form for the chemical

kinetics and is generally represented as

+ .*

, = '(e,, '- l.e, )Tr a.,(,.

-"Ka - I (A/R

where Ae and S.h denote the positive stoichiometric constants for

the reactants and products, respectively on ti-S+ pr o

t and v ir are the forward and reverse reaction rate coefficients

sii are assumed independent of the activities, although

th-c emoynaic wThis is consistent with the equilibrium condition

afnTye isroa7]Ti term indicati n an mehandil ontprbti on .
therfollowing dev aon i

The arlaceiaws and cntit term indicatingamechaionalontrtiof

Next, we will derive the first-order equations of acoustics using . "

the balanvelocit adiont.iTtie relations fo te eatin..t i

The energy equation is expressed in terms of s by first
transferring it into the form of an entropy equation as before. Let

the internal energy be written as e f(c, wi). Then bea.---i

Using the following relations

Nex, we will deiv e fistore eqain of.:out:.uin

one can rewrite (2.4) as e s i m Gr

i - - + ' - -A. - ,.

Assuming Fourier heat conduction and using the relationship

Sia- -' 3 I, Tt d.i  one obtains for the local change of entropy
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A,7 + +I

Also, ilpgives

+0x

so that

pc,, e- . + .. = T d, + , a Ad, +

with e - -

Now the equilibrium heat capacity which is measured by calorimetry

C at equilibrium) is defined by

" is called the instantaneous, or "frozen" specific heat at constant

pressure (measured at fixed ). The equilibrium isobaric and

* isothermal coefficients of compressibility areA

vr ( ArI,,.-

C4 reY, ::

Linearizing the hydrodynamic equations (total mass, linear
momentum and energy) gives -' .'[

p + a + 0 (3.2)

6p.-

+ L.r- (3.4)
23- o , ..
235.. "'":



Further, the density relation ,  ) can be linearly approximated

-1s + ..- .

* where

Equation (3.2) obtains .

+~~ - . L- V 0(3. 5)

IL
Next, consider the chemical kinetic equations and their linearization.

+, "
r It is convenient to decompose the reaction velocity into xelocities

for the forward and reverse directed reactions respectively. .. .

+t t

P It

*,'°r_- :[ For small departures from the strong equilibrium point (6. o - '),
, where Ar " 0

't"~~- 41 %n(i

F~ e

+ + g i ei

yi ld :.-.'

and-

'p.

Let

Now . : - L i ;~

for1 .Combining with a similar expression obtained for
yields

SinceL
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4and __ I Aw

4 p~RE) IRe

the linearized kinetics equations are written
1'L

__-S hra__ _ _ (3.6)

4.

A Ke( ) e may be evaluated by writing the chemical affinities in

terms of a linear stoichiometric combination of chemical potentials
(partial molar Gibbs free energies). Let

where + IV

is the usual representation for the chemical potential. is the/_iP
standard function, Vp is the activity coefficient and x is
the mole fraction of component a( . Then calculate

+ Srwi 4 ~~\

where

3.5 Chemical Relaxation Times

Equation (3.6) is a linear system of coupled inhomogeneous
differential equations of first order in . For 0 - 0 and
(i.e., a single elementary reaction), a chemical relaxation time

towards equilibrium can be defined as

R,9.

so that ~

Different chemical relaxation times may be defined in a similar way
according to the particular set of independent variables used for C, .

That is, relaxation times may be defined with held fixed, for
example, where I is the specific entropy rather than at fixed e and

.. . 4 for fixed {,i11 is related to C.. by 'C. C * where

t+ r Co.
~ -PI.?R,

WS.. . .. .. . .. . . . . ". . . . ., ,
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When considering multi-step systems, the kinetics equations at

constant become

"..4

where G~i

The chemical relaxation times can be calculated from the reciprocals of

the eigenvalues of G or J (defined below to separate the linearized

kinetic equations into independent, disjoint equations). The

determinantal equation for G can be converted into that for J by a
symmetrization procedure of Jost [I01. Castellan [1i has discussed
eigenvalue determinations by direct and approximate methods for various

chemical systems. are obtained from the equation

with

The kinetics equations may now be expressed in normal form. Let M be a

matrix constructed from the r eigenvectors corresponding to the

eigenvalues of the matrix 3 and define - (Z
then - - -

+..HL e" (2 Lt 9++ 0 Ft.(3.7)

3.6 Modified Kirchhoff-Langevin Equation

Treating equations (3.3), (3.4), (3.5) and (3.7) as a system of
linear partial differential equations for infinitesimal plane waves and
introducing damped harmonic wave solutions for each acoustic variable

"* results in a modified Kirchhoff-Langevin equation. That is, assuming

"::,,. -- ~e*A? ( 9< x + ),.i •

results in a homogeneous system of algebraic equations in terms of the
acoustic amplitude variables " , 1' V*' Nontrivial

solutions exist if

det = - - - 0 (3.8)
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where the submatrices are given by

0 B

ip.uc, o'X -* 0 (I \capo i,. iHi. Hit

H/R VR '" /to

0 + idcl

0 0

In general, a complex-valued biquadratic equation for (@A)is
obtained 191. This may be written in terms of dimensionless parameters

as follows:

where ,

a° 4L -.
r

""- t "' ( Reaction frequency number)

-'"and
,, C. /c -,(Ratio of specific heats)

Also,
-_ _ H :t t .

-+ C CpR.'
, P .

,,.. I-,-Cor. ,,P Re.
bow Hr Vl r r c,

=-I- -r,- e

B -~~ ~ ++ +i Wr, ,r..
q~71Hi,  ...IMrrI .. ) Vr = ( +"/ :::::2

7:~~~~~V .'CIE. .. .- "=.

I-~~~~ -r -.- R,-% . 9 , , ,"-"-"-","-".'-". ?"-"""-"""
"

.' ' I I'"; .' ' ,''',', ". ." . - -, -



For the cases of 1) a single component non-reacting fluid and 2) a

fluid mixture with a single elementary reaction, the algebraic

equations correspond to the results of Truesdell [2] and Mazo [121,

respectively. In the case of a non-diffusive, non-reacting system

( I) C- e LB ) the classical Kirchhoff-Langevin equation (2.18)

is obtained. The propagation constant % can be determined by solving

the complex algebraic equation numerically. Two of the four values of

Ix are unphysical (negative values of 0() and the other two correspond

to type I and type II waves respectively. The type I waves are chosen

to correspond to the classical theories. The type II waves are found .

to have very large attenuation and have not been observed

experimentally.

3.7 Approximations and Calculated Results

The calculation of X from the general biquadratic equation is

algebraically complicated and it is not apparent that the viscous heat

conduction and reaction effects can be separated. We should note that

for a nonconducting fluid k Y 0 , the biquadratic equation reduces

to the quadratic equation

* or

C ; __ W-_cc"
C;C

From the above equation it is seen that the viscous contribution to the

absorption and dispersion is linearly additive to the reactive

contribution only for 40 >. Other approximations and power series

expansions have been considered; in particular, those needed to obtain

the approximate formula typically used to interpret experimental -

measurements. Simple and direct relationships are sought for fitting

data from experimental measurements as shown in Table 3.1.

The assumptions needed to obtain these simple formulae from the

exact biquadratic solution are: 1) an ideal solution, 2) viscous,

thermal and diffusive effects are negligible, 3) either a dilute

solution or S." 0, 4)(4 ,and a reaction sequence

orthonormalization. We wrote a computer program to calculate the

absorption and speed of sound by the "direct" method, which requires
all the physical property data. For the single-reaction case, however,

the approximate equation is precisely that obtained by others. For
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TABLE 3.1 4

* Typical Formulas Used to Compute Chemical Reaction

,. Contribution to the Acoustic Absorption
(Neglecting Viscothermal Effects)

Single Reaction Case: EXAMPLES

Uncoupled Reaction Case:

N" (So cr P. )! Cr

Multiple Coupled Independent Reaction Case:

V C.(.8 [iCvr'

illustrative purposes, Fig. 3.1 shows the sound absorption in acetic

acid. The chemical system and sound absorption calculations were made

assuming a monomer-dimer reaction (2 A C (D ) in equilibrium which

exhibits a single relaxation.

Figures 3.2 and 3.3 present calculations performed on a cobalt

polyphosphate (Co-PP) system where the ultrasonic absorption due to .

chemical reactions is considered analogous to Eigen's ion-pair

formation mechanism in simple electrolyte solutions (6]. Here the -"
chemical model considers ion-pairs exhibiting three states of hydration

that are in equilibrium relative to the two reaction sequence

A' --W'-, Q-t State A corresponds to the hydration shells of the

" polyion site and the counterion in contact without overlapping; state
B consists of relatively unaffected counterions and partially

dehydrated polyion sites and state C consists of the hydration shells

of both the counterions and the polyion sites being modified. It was

assumed that the excess absorption due to the above described chemical

process can be separated from other effects by subtracting the

absorption using TMA (tetramethyl-ammonium) as the counterion. We

' oremark that approximate calculations of 5((-P ) minus q(TMA- PP)
differ percnt which is wellfwithin

experimental error. The plot of 4X/fl for a 0.068 N Co-PP is shown in

Fig. 3.2 and the relative contributions to thea(X or absorption per
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Figure 3.3: Absorption per wavelength versus frequency for

0. 068N Cobalt-Polyphosphate Solution
SA.

wavelength curve are shown in Fig. 3.3. The relaxation frequencies are

the same as those for a 0.125 N solution (13) and provide quantitative

information 3bout the reaction rates. The amplitude of the spectra for

the react ions,(>Co)j and(ah)., are interpreted as mainly volume
ichanges associated with the reactions.

Calculations have also been performed for other chemical systems,

each having two reaction steps, including aqueous solutions of glycine

and water-p-dioxane mixtures 1131. The calculated values using the

exact and approximate formulae for the multiple-reaction cases examined

were well within experimental error. However, it was shown that the

viscous term in the case of p-dioxane-water is not small compared to

the reactive terms over the entire range of frequencies. Therefore,

assuming that the viscous term can be decoupled from the kinetics by a

linear subtraction is not necessarily valid and must be explicitly F.''
justified. From the calculations it is not possible to determine if

the difference between the exact and the approximate values is due to

the viscous approximation or the chemical approximation. Because the

criteria for the chemical approximation are satisfied and the error

decreases at high frequencies where the viscous term dominates, we

attribute the difference to the nonlinear viscous contribution at low

frequencies. Furthermore, the exact and approximate calculation and

interpretation of sound absorption spectra for quantifying

thermodynamic parameters (e.g., heat or volumetric changes) associated

with the reactions may differ. in general, the exact results depend

upon Mi, the transformation used to diagonalize the kinetics equations.

The chemical systems previously studied indicate that the approximate

formula provides estimates for the first reaction parameters which

closely agree with those derived from the exact calculation. However,

the second reaction (heat or volume change) calculation is affected by-"
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the transformation used even in dilute cases where the chemical

relaxation times are well separated.

3.8 Dependent Reactions

A general reaction scheme may be composed of r-coupled reaction

steps containing dependent reactions. As a consequence, the total

collection of reaction sequences may be completely represented by a

subset (say R) of independent reactions that span the reaction space.

Chemical mixtures with dependent reactions have been considered in the

acoustic theory for a classical Newtonian viscothermal fluid. There

the reaction sequences were rewritten according to a procedure similar I
to Heilman [14]. Let

Ic
= 0 f -= 1,2D. r J+

~r

Btp is a matrix of dimension (rxR) whose first rows are identical with

the identity matrix and is the matrix of dimens4on (Rxk)

consisting of the first R rows of (i.e., the chosen independent

set of reactions). -"

Let's consider a simple example of a dependent reaction, a

triangular reaction scheme,

g-2 B C0 er

qzr 0 -1

where Rank ( ) 2. If we choose the first two reactions (or rows

in the stoichiometric matrix) to be independent, calling them

Now the acoustics theory must be appropriately modified by transforming

the various thermodynamic and kinetic parameters S.C

:.:. v "'

and a, , G-r- ,,u,.., ; rI : Z,,," (3.10)
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where nonideal terms are neglected. For our triangular reaction

example, -"

= .. "- I _ ,

and

I ;

I 4.

x x:

According to (3.10), this equals

-i 4 -

Also, it can be shown that the eigenvalues (or reciprocal relaxation

times) are computed from .
"44 to-I

P- a.. P.

That T

where P B1. r #A.
That is, the matrix square root in the example becomes

p_ (B:B 11.,)' =

For ---..-

and the two independent reaction case is obtained (e.g.,AVB5 and

In general, for the dependent reaction case one obtains a

biquadratic equation for X similar to the independent reaction case;

however, the thermodynamic quantities and coefficients are redefined

191.

2i4
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4. Binary Mixture of Newtonian Fluids with a Generalized
Fick's Law of Diffusion

4.1 Continuum Balance Equations and Constitutive Relations

The classical problem of the propagation of forced acoustic waves

in a binary mixture of nonreactive fluids, particularly monatomic

gases, has been previously examined in considerable detail using

hydrodynamic [15-17] and kinetic theories [18-20]. Here, the

hydrodynamic approach will be presented using appropriate constitutive

equations including a generalized form of Fick's law of diffusion [21]

to obtain a set of linear partial differential equations from the

balance postulates. The constitutive equations are deduced from a

thermodynamic theory that uses the entropy inequality and also certain

d5 invariance principles [22]. Specifically, for a mixture of two
. constituents (nonreacting) A and B for the heat flux (Fourier's law)

Ii - - e,- AD U (4.1)

for the caloric equation of state

- 4 .2 ) " O ,

for the inner part of the total stress tensor;

for the symmetric diffusive tensor (4.3)

(4.4)

and for a generalized Fick's law .

+-A MA DA& + 4(4.5
-ACaS)AA ul CF IL M

7) I ) + e 2. ad ) r i ie (4.5)

consistent with the classical results of irreversible thermodynamics
16,71 and the results obtained by Goldman and Sirovich 123]. 7V KD.~ K~, vj j~and AEare diffusive shear and bulk

.10 viscosity parameters that define the material.
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In terms of the variableseGiJ &A , the generalized form of
Fick's law (4.5) can be written as:

DAS MA -DA DAG 40T 91i +

D AS M A (6 - t ) + D- IG1 V, +
CbA CS P/ &1 Co

2 f . (4.6)

where the brackets <> refer to the traceless part of the tensor. On

the right hand side, the terms correspond to diffusive transport by a

concentration gradient, the pressure-diffusive effect, the

thermal-diffusive or Soret effect, diffusive effect due to a difference

in body forces, and a diffusive-viscous drag. In addition, an inertial

term appears on the left hand side, and has the satisfying effect of

changing the parabolic diffusion equation to a hyperbolic form hence

making propagating diffusion waves travel with finite speed.

4.2 Linearized Equations for a Binary Nonreactive Fluid
The linearized balance equations for mass, composition of

component A, linear momentum, and energy, as well as Fick's law are

given by:

+- PA, = 0 (4.7)

(VA + ,,,, C ,a *,= (4.8)

+ cf+c + .Aj 3 i

, ,t F +. +  0 ,,,=4 ,, -
(4.10)

U; * DjAe d6 -DA KT±! ~+ 
N

+ + r~ [ + +

where the thermodiffusion coefficient JD is given by
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where

is the specific enthalpy and all coefficients; e.g., CpfCv p .

are evaluated at equilibrium ( , )o

4.3 Exact Solution - Sixth Order Polynomial for 'X..

Forced plane waves propagating in the x-direction are assumed to

be admitted by (4.7-4.11) where I I Iexp(Xx i;ct)for 1w {0,j
J These equations obtain

4 ;. + pX = 0 (4.12)

4 WA CX U4 0 (4.13)
to + ++

- (4.14)

PC + + 

~. .,-GM-

(44" )x.. I = ,(4.16)

Therefore, for nontrivial solutions det[ ( ] F'LOwhere
,r, :r.: , r , F F = r -(4 ot

/l"]Xr + P:X ,+cO_II 21 C + -

3' . -X (4.16

•~ ~ 2. r,, = ,.1, , ,, r. 4

8 . M .a r r
• . ~248 : -. :



Iv =< - '+ 4/.3~ (14

DAD r M& 3 ~CrI
,= DA [ Tb ]' :

S W"d-,o

i(bOAC.V)4A
!DAB 4'; %

I+ tItI~CC W )2

Ircvo-,-.e , to- c,-c.);w/ee , .

Also, note the thermodynamic relations,

and e8 1 '-I

Now, a sixth-order polynomial is obtained for the complex propagation
coefficient % which is analogous to the Kirchhoff-Langevin biquadratic

equation for a single component.

C. + i oe 3 4v + oz)-

+U4+ (,) 4L 4 J

where (4.17)

rA W. ,o • ''

ICI

, DA D [[ :.

OK.. =+ :v
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_ _ _ _ _ _ _I I.. I frp Ij .DASD

cc K, +" r

"" c *---------------

4- C (4 I1D)~~@ 3

:oA. D. + .

.-. c, 13 c.
4 .2-

.* ,, ce r

"" __c___ -, ) + ,C (+ c: (") , ' ,,

54D~ -I +A~wAS !t,,L+c~~~)~
PAA.

+ r , c

ZC, .3i + 14- + .- t+

e AS44r~

It ~~ ~ CA to______

Equation (4.17) includes terms that arise from the generalized form of
Fick's law. The dashed-underscored terms are due to the
viscous-diffusive terms and the solid-underscored terms arise from the

inertial-diffusive term.

4.4 Approximations

Explicit results obtained by solving the complex sixth-order
polynomial (4.17) cannot be interpreted in a simple manner. However, a
low frequency expansion does obtain relatively simple representations.

Set

z -. = z-,.,,Z,. + " Z. +.. - - ( - +  ") :' -

250'..
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i* ..

Then (X C / [4 /) ]

j+ C ) (4.18)

and 2 ,.4
CO-

- C.

C 2CC4

- 29~+ (4.19)
C."

Therefore, the results are similar to those obtained by Kirchhoff

for the Newtonian single component fluid, viz., the sound propagation

is nondispersive and the absorption is proportional to the square of

the frequency and depends on viscous, thermal and diffusive effects.

For the special case of a mixture of perfect gases, (4.18) becomes

_. 4.r_"
_,, %- 0 D , 7- ", T. ,.

C." ~ PCV

which is precisely the result obtained by Kohler [151 and Goldman 117].

Kohler, however, used the classical form for Fick's law, which does not

include the inertial-diffusive term nor the viscous-diffusive terms.

Therefore, at low frequencies, these latter effects are negligible.

4.5 Calculated Results

Numerical computations of the roots of (4.17) were obtained for

gaseous mixtures of helium and argon with compositions that

corresponded to the experiments of Prangsma, Jonkman and Beenakker

[241. The fluids were considered to be ideal gases, and the

viscometric coefficients that appear in the form of Fick's law were

computed using the results of Goldman and Sirovich [23,25]. Their

relations were given in terms of which are the forms that appear

in the constitutive equations for the individual stresses S. It was

more convenient to use the total stress tensor and the symmetric

diffusive stress tensor Cb CAS* The viscometric coefficients are

related by:

1AA + + e
2 CO (7AA+ bA) CA Y'7AB

... ,%,= Z (%,,c, - c,,cs ?Aa,, , 9,,) + '?,,,, c "::

. . . -C S. (.
and 2LC 8 , VAA +~ 251 1



All the bulk viscosity coefficients, viz., 4 , 4 , and V(* were

assumed to be identically zero, consistent with the kinetic theory.

Although the Maxwell model (inverse fifth-power law) is known to be

less suitable than other models, such as the Lennard-Jones 6-12 model,

it is not considered that the numerical values will be substantially

different so as to alter the results appreciably.

] %

o0 1.0..
10-

c/co I../ I-

10-1

lop 101 10'" l0" loll 10" loll
w 'W906

Fig. 4.la Plot of dispersion versus frequency for a helium-argon mixture

Fig. 4.lb Plot of absorption &/k. versus frequency () for a helium-argon

mixture (xAR = 0.10, p = 1 atm, = 293.160 K). Data points * from '-

Prangsma, Jonkman and Beenakker [241; Theory of Goldman [171 ?J

Calculated curves for the absorption and dispersion for all three

wave types are shown in Figs. (4.1-4.3) for X A =0.1, 0.5 and 0.75.

For some of the experiments, the agreement with the theoretical values

for the type-I wave is remarkable. However, it is apparent that

type-II and type-III waves must be considered in the high-frequency

range. The results of Goldman's two-fluid theory for the type-I wave

are also shown in these figures. These results are similar; the

differences are probably due to the different choice of values of the

physical properties of the helium-argon mixture and the more general

form for the energy equation.

The absorption data of Greenspan [26,271 for argon, helium,

krypton, xenon and neon which are pure gases are shown in Fig. 4.4,

where f/A. is plotted versus

All the data obtained at f =1MHz differ from the results

obtained with the Navier-Stokes theory for 04" 0.|, except the helium

data obtained at f = 1MHz. The 11 MHz data were confirmed by Meyer and
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Fig. 4.2a Plot of absorption CL./ k. versus frequency "~j for a helium-

argon mixture (x~ - 0.50, p - 1 atm, 9* =293.16
0K). Data points

from Prangsma, Jonkman and Beenakker [241. -- - Theory

of Goldman [17].

Fig. 4.2b Plot of dispersion versus frequency for a helium-argon mixture -

(x =0.50, p I atm, 0, 293.16'K)

-1 -Trr~ I C

'IN

.10/ '0',r~

lo 101 l0o,' 0 109 loll

Fig. 4.3a Plot of absorption oL/Y. versus frequency Wa. for a helium-

*argon mixture (x. 0.75, p - 1 atm, 9,*293.160K). Data points S from

* Prangsma, Jonkman and Beenakker [241. - Theory of Goldman [171.

Fig. 4.3b Plot of dispersion versus frequency for a helium-argon mixture

(xAR -0.75, p 1 atm, =293.16'K). L~



Sessler 1281 for argon. The theoretical curve for the type-II wave is

also shown in Fig. 4.4. At low frequencies, the attenuation is

relatively large and the type-II wave is probably not detectable for

X !k 1.0.
On the basis of Greenspan's measurements for pure gases, the range

of applicabililty of the hydrodynamical theory to the prediction of

absorption and dispersion of sound in gases is rather limited. At

)14- 0.1 , there is an apparent deviation of the data from the

theoretical curve, i.e., the deviation is greater than the experimental

scatter. Therefore, the theory appears to be valid only for Y 4 0.1

for which the absorption is given by the Kirchhoff relation (4.18) and . .

the sound velocity is non-dispersive.

a/k. CAk *

1.0-.

lot- .'%-"

* %5%

10 0
"1

1.0 10 ic
e  

10 0010
I

Fig. 4.4 Absorption of sound in pure gases plotted Fig. 4.5 Plot of absorption -
as a/ko versus the viscous number XN . Data of Green- a/kO versus frequency w for . :

span: 0 argon, 0 krypton, 0 neon, /6 xenon, 0 helium, a helium-argon mixture
1MHz, 0 helium IMHz. The solid lines are the results (xAR= 0.999, p= I atm, U;.
of the hydrodynamical theory. Oo= 293,16°K)" -.A

On the other hand, there is the possibility that the discrepancy --.
between the experimental work of Greenspan and the results of the i-'"

hydrodynamical theory was affected by impurities in the gases. To "

S. 5 N.

provide some perspective on this possibility, calculations for a .\.
mixture of argon and helium( (XA O.qqq were made and shown in Fig. -

4.5. The type-I and type-II waves are essentially the same as the

type-I and type-II waves of pure argon. However, the type-III wave canm
occur, and in the range of the measurements it has a lower attenuation":[.

%than the type-I wave which apparently dominates the measurements. The.'-.

wave speed of this type-III wave is about ten times faster than the %"..
type-I wave. It should be remarked that other kinds of impurities can

..V-,.
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produce different types of relaxational effects. Further experiments

that focus on the different wave types would provide useful

information.

5. Viscoelastic Fluids-'i
There is a large class of fluids that do not satisfy the linearly

viscous constitutive equation (Newton's law) for the stress tensor.

Examples are synthetic polymer melts and solutions, biopolymers,

emulsions and other multiphase fluids. During the last two decades,

there has been considerable work done by fluid mechanicians to

understand some of the flow phenomena exhibited by non-Newtonian

materials. The particular problem of determining the characteristics

of the propagation of infinitesimal acoustic waves through viscoelastic

media is considered here in order to better understand non-Newtonian .'*

effects on the mechanics of fluid motions, and also because it provides

a method for determining some viscometric parameters of non-Newton±an

fluids that are not otherwise accessible.

5.1 Viscoelastic Constitutive Equation

A number of constitutive equations have been proposed to represent

the stress tensor in terms of the motion of the fluid. These forms

were developed phenomenologically by using hydrodynamical and/or

molecular models, or by using the methods of continuum mechanics. A

constitutive relation for the stress tensor that has been shown to

represent a large class of nonlinear fluids was developed for the model

of a simple fluid [29J for which

"S (, ) - _(5.1)

The stress tensor associated with a fluid particle 6 at the time t

depends on the entire history of the relative right Cauchy-Green 
tensor .-

where past time oTu;.t-tr The tensor

where is the relative deformation gradient.

The model of a simple 
fluid accounts for 

the memory and also 
the local 

.t.;

deformation of the material by the functional dependence of the stress .

* tensor on the entire history of a measure of the local deformation
gradient. To obtain explicit analytical forms for the functional

and to satisfy the intuitive belief that recent events (small

r ) influence the stress tensor (associated with ( ) more than those

occurring in the distant past, the concept of "material fading memory"

was introduced. This in turn brings in the idea of a relaxation time.

'~5 ilk% "-



Non-Newtonian fluids that have a long memory have a large

* viscous-relaxation time.

Using the mathematical representation for "fading memory" and the

isotropy condition for a fluid, Coleman and Noll [30] obtained:

4 (5.2)
ale bX* ~~. .. "

which is the finite first-order linear form for a viscoelastic fluid

where is the position of 6 at past time . This representation

corresponds to small displacements superposed on the rest state.

5.2 Sound Absorption and Dispersion Theory

Having developed a general constitutive equation for the stress

tensor to represent viscoelastic fluids, the problem of sound wave

absorption and dispersion is considered. If this viscometric model is

adequate, analytic results are expected to describe the behavior of

small-amplitude acoustic waves in a variety of viscoelastic fluids.

For planar sound wave propagation, it is appropriate to -.

approximate (5.2) by the linear infinitesimal expression:
i.°.

We remark that this relation is exactly that obtained by the

phenomenological approach of using a superposition of "Maxwell

elements" to obtain an expression for a linear viscoelastic fluid [30J.

Most other models for isotropic non-Newtonian materials can be

represented by (5.3) in the limit of small-displacement motions.

For sound propagation along the x-axis, only the xx component of . ,

the extra-stress tensor is required, viz.,

AL . ,- (5.4) ...,. ..,

It should be noted that this continuum mechanics model is

essentially mechanical; it accounts for the temperature (the

thermodynamics) in the classical way. The quantities such as the

internal energy (E ), the stress tensor (5), etc., are assumed to

depend on the present value of the temperature only, and not on its r2
entire history.

The linearized equations of change (2.11), (2.12) and (2.13) and

the equation of state are applicable to this problem, and together with

(5.4) form a deterministic system for the four unknowns , , ,
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and ±. Damped wave solutions, given by (2.16), are then assumed for

the acoustic variables.

The expression for becomes

It is convenient to define the Fourier transforms of the

shear-relaxation and compressional-relaxation functions as "complex

shear and second-coefficient viscosities" respectively, viz.,

~Wfx~ E~(&~ c~o(5.6)

Also define the bulk compressional relaxation function by

(w-) + (5.7)

and the "complex bulk viscosity" by

K~(LI~ ~ (WJ ,'bIJ. (5.8)

The complex-valued shear viscosity function has been experimentally

determined for a variety of materials [31]. Also there are a number of

theoretical models to predict values of the function [321. These

studies will be discussed briefly in a later section. We also remark

that there are other representations for the "viscosities" that have

physical interpretations, specifically the relaxation spectra defined

* by:

and

(5.9)

The functions "(A, L(AN and K(.X) are the shear-relaxation, the

second-coefficient-relaxation and the bulk-relaxation spectra

respectively. These forms are obtained in a natural way by extending
the concept of a Maxwell viscoelastic fluid having a single relaxation

time to the concept of a material having a continuous distribution of

relaxation times, such that

SH. OJT = contribution to total viscosity for

Maxwell elements with times between -

T and T AT

.......... .....



Further, "molecular" theories for dilute polymer solutions obtain the

shear relaxation spectrum directly in terms of "molecular" parameters

[33-35].

Now the acoustic stress tensor can be written in a form similar to

the Newtonian case,

A L 3 
(5.10)kt

where the acoustic viscoelastic complex viscosity is defined by

VV

CI,_ , (5.12)

or

T __ ___ __ (5.13)

+ ;6

Note that in the limit of C-.o,
4i

(5. 14)

which is the acoustic viscosity for a Newtonian fluid. This is

consistent with the intuitive belief and also the experimental

observations that all isotropic non-Newtonian fluids act Newtonian

(linear) for small deformations.
The linearized acoustics balance equations for mass, linear

momentum and energy applied to a viscoelastic fluid having classical

thermodynamic response obtain the same expressions as those for a

Newtonian fluid except that the acoustic viscosity & is replaced by
the frequency-dependent acoustic viscosity " '.

For a linear viscoelastic fluid, the problem of establishing

measures of the absorption and dispersion of a forced, plane,

monochromatic sound wave propagating into an unbounded fluid otherwise .

at rest as a function of the physical and thermodynamical properties of
the fluid and the frequency of the sound is posed as finding the

function:
F > -, C.,...-

where <o> represents those rheological properties of the viscoelastic

fluid that are relevant to the acoustics problem. The two relaxation

functions V(I and 4)(A), or equivalent functions such as the relaxation
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spectra H (AN and LMX) must be specified. Here we consider the
second-viscosity relaxation spectrum L(A explicitly rather than the

bulk viscosity relaxation spectrum V-0) since it appears in the theory

as an independent coefficient, whereas K(M) is defined as the

combination L( A 14(X) . We do remark that the bulk viscosity is

often convenient to use. Recall that 1"o for monatomic gases at low

pressure (the "dilute" range). There is no loss of generality for
either choice,."

The relaxation spectra appear to be more convenient to represent

the viscometric properties of viscoelastic fluids because there are

"molecular/hydrodynamical" theories for polymer solutions that obtain

these quantities in terms of molecular parameters explicitly. Using

the spectral representation, the rheological properties <*> that are

relevant to the acoustic problem may be represented by:
<. = (5.16)

The and are sets of characteristics times, and and
are sets of dimensionless constants that represent the shear and

compressional relaxation spectra respectively. Several "molecular"

models for viscoelastic fluids [321 obtain finite sets of values. In

general 4(A and L(A are continuous functions, and it is necessary

to specify an analytic representation and the parameters that appear in

the function. However, these parameters can be described by (5.16).

Some examples of discrete and continuous spectral representations are

given in Table 5.1.

By using convenient dimensionless parameters, the characteristic

equation can be rewritten as:

(5.17)
where X is the frequency number, Y is the thermo-viscous number and P - * b

is the non-Newtonian viscosity number. These quantities are defined

more completely in Table 5.2.
The problem is then reformulated as finding the function:

¢" A's "" " 0 ' * '" "(5.18) .:

where the inner brackets [-1 represent the physical and thermodynamical
properties of the fluid. The space needed to represent the physical

properties of a Newtonian fluid is the (vy.) plane; however, a
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TABLE 5.2

Dimensionless Groups for a Linear Viscoelastic Fluid

Symbol
Parameter

General Fluid Newtonian Fluid

Non-Newtonian Viscosity p' .'/A
Parameter 1rr

Non-Newtonian Viscosity pit a'7. P"
Parameter 2

Frequency Number X -a e/ X O Xi 0 W/o 4.

Thermoviscous Number YX ll*wr. ct /P' Y= Y W lll/l C/ %
Non-Newtonian Viscosity wi/h s

Number P" P  P. 0

Viscosity Number 'V ('/" ' t-- (*/" '

Stress Relaxation Time T E T . o

Compressional Relaxation

Time 1%C.fr5. 0_-_O_"___._

4. , C.. --

multi-dimensional space (P-space, P>2) is necessary for a general

fluid. The dimensions of this space depend on the number of parameters

used to specify the compressional and shear relaxation spectra. It is

clear that for practical purposes, the space should be a minimum,

consistent with adequate correlation of experimental data. Currently,

-- there are few molecular or phenomenological theories available for

" * which it is possible to relate the relaxation functions to physical or

molecular properties of the fluid. Consequently, the present methods K'"

of choosing a relaxation spectrum are empirical or phenomenological,

and are tempered with the desire to retain mathematical simplicity.

There is, however, a considerable literature for stress relaxation

functions for solutions of large molecular weight polymers in otherwise

Newtonian solvents [31].
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For a fluid which may be represented by a single relaxation time

for compressional relaxation, and a single relaxation time for shear

relaxation, (5.18) becomes:

-- ) , X. % V. ,.T. (5.19)

If the relaxation times are the same, then and does not

appear explicitly in the equations, hence

S X., -. (5.20)

and the physical property space is 3-dimensional. If the relaxation

time is zero-, then To and (5.20) is the same form as the Newtonian

case.

The calculation procedure for the biquadratic characteristic

equation is straight-forward, once forms for the compressional and

shear relaxation spectra are specified.
Similar to the Newtonian case, there are two possibi ! -

wave-solutions (Type I and Type II) for viscoelastic fluids.

Generally, the Type I wave is considered to be that observed in

experiments since the absorption of the Type II wave is much greater, :

hence those waves would be expected to decay very rapidly. There is

very little information available about Type II waves in the -

literature. Our main effort is concentrated on the Type I waves.

5.3 Power Series Expansions
~~Power series expansion for the measures of absorption and _

dispersion may be established in terms of the variable X. This is a

convenient representation having results comparable with current

theories. For the low-frequency range, we find:

X + (5.21)

where (5.22

I-.

. o + L (A;

_.-'Now

262
.t.,. v .. . -.. . . . .- "..'.'.--'.-..-. . '. -'-' - .- .. - .. - .. . .. - "4 .' . *-', - '''""''* " . - - .. -"- "-"4 "- "- ---



or

35

Both r'() and K'(J) are monotonic non-increasing functions with o =to

and i4(o')=K* and ' - In the Newtonian theory, ( is the

* smallest possible value. Therefore, if 4)',() is experimentally

observed, a viscoelastic effect is indicated.

The quantity K'W( may be computed from absorption data by

__! _ (5.26)
'S \. K

and KX\ may be determined by inverting

K! r K(X)~

It is of interest to write the form of the dispersion relation for 4.

the limiting case where Y,4 4. Now,
2...,

and note that

There is a similar form for the compressional part, call ittl . Then

Therefore

which gives an estimate of the dispersion in a viscoelastic fluid for

"small" values of X.

In order to obtain some idea of the possible results of this

theoretical approach, fluids represented by discrete relaxation spectra

and continuous relaxation spectra have been examined. It should be

stated that the representation of the spectrum for a real fluid by a

* single relaxation time or several relaxation times is a simplistic

method used to characterize fluids. If there is a complete lack of

data for a substance, then this approach is often necessary.

2 6 3 ! ."... ..." "

4**~ 4* ~0*~ .~ a' 
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Discrete Relaxation Spectra

For a single relaxation time for shear, and a single relaxation

time for compression, the relaxation spectra are given by the analytic. forms 'Z

R..

The parameters which determine the absorption and dispersion measures

are given by the set

where the inner bracket represents the physical properties of the fluid
and X, is the frequency variable. Each fluid is then represented by a
point in a 5-dimensional space. There is a special case whenluT,,

or when the relaxation times for both the compressional and shear modes

are the same. Then t, does not appear explicitly and the P-space

reduces to 3-dimensions.

If there are two relaxation times for shear and two different

relaxation times for compression, then the spectra are represented by:

and I

". The coefficients (ad p) 'Th oefcins 1an care related to 9"'and X and are

related to A. by the normalization relations given in Table 5.1.
Define A and by

Therefore

-,. , (L.,.-...

The measures of absorption and dispersion are therefore determined
by the parameters.r,-. <1r Y']A

.A

,_ The P-space, whose coordinates are given by the inner brackets is

9-dimensional. For each additional pair of relaxation times, the
P-space is increased by four dimensions. The dimension (d) of the

space is given by d = 3 + 2(,A.*.) where i. and ;. are the number of

" shear and compressional relaxation times respectively. It does not

seem desirable to consider more than two relaxation times since the
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number of adjustable constants would be sufficiently large to

adequately correlate any experimental data.

For the one-time model, the measures of absorption Ck/k and
dispersion n. were computed and are shown plotted in Figs. 5.1 and 5.2

respectively for various values of the parameters T. and T The

values of Y , and . were chosen to be 1.0, 3.OxlO- , and 2.34

respectively which are typical for a liquid. It is seen that the

absorption curve may have a single maximum, or a maximum and an

inflexion point depending on the ratio of the characteristic times T.
and T. . Now, we comment that even with a simple 2-relaxation time

model, it is possible to obtain results which represent many available

data. However, we must note that the theory neglected any changes in

the thermodynamical properties of the fluid caused by the passage of L

the acoustic wave, other than those which occur through the usual

caloric equation of state. The molecular theorists have noted that

when a disturbance is applied to a gas which is in thermostatic

equilibrium, a finite time is required for the energy of th. _,ystem to

be distributed among the possible energy levels. During the transition

from one equilibrium state to another, it is possible to consider the

fluid as a mixture of two or more substances with a reaction or

sequence of reactions occurring among them. Other relaxation theories

have been proposed, based on different models, and in general do not

3

.1 .

.01

2o ,I 1 I

.001 .01 .A 1 10 100
Xn

Figure 5.1: Graph of O-/k versus XN for a single-relaxation

viscc, lastic fluid

Case TO  T
0 0

2 1 1
3 1 100
4 100 1
1 Newtonian
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10

r2

1 p 5 .

.D01 .01 .1 1 10 100

Xn
Figure 5.2: Graph of Dispersion r versus X for the one-time

N
model. The numbers correspond to those of Fig. 5.1.

account for the viscosity of the system, other than superposing the

classical results.

Power-series expansions for the measures of absorption and "

dispersion for the low-frequency range obtain

and
T- .I( V-, - ( . t,. T LL -Z. xx T.-

where

4 .. 3

Continuous Spectrum
6 -L

The results for a continuous spectrum will be examined by

considering the Gaussian model:

* ,"i' l L-- -, -i
The limiting case of T--'9o is the Dirac delta function The

factor is a normalization constant and is fixed once t* and Z, are

specified. '
The Gaussian model contains two arbitrary times: T. and ,. If a

similar form is applicable for the compressional relaxation model, then

two additional times are needed. Therefore, the dimensionless

parameters which govern the measures of absorption and dispersion are

given by
X" V y' /Nl T(, , (5.27)
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and each fluid for this class is represented by a point in the

7-dimensional P-space whose coordinates are given by the bracketed

terms in (5.27).

A physical interpretation can be ascribed to the viscosity spectra

for the Gaussian case:

then = amount of viscosity in the range of 7

values between I and * . .::.'

and the normalization is given by:

Now L.-,

N aV

or

where

Cr~- Z ezY (V Al

Now ~ ~I and also T. /, T.A
The Gaussian form for the relaxation spectrum does not obtain

simple results for the absorption and dispersion. In general,

numerical computations are required. For the case T--o, results can be Z..-

obtained in terms of tabulated functions although the calculations are

not apparently reduced.

5.4 Comparison to Experimental Data

Available experimental data for viscoelastic fluids are generally
incomplete since absorption and dispersion measurements have not been

obtained over a sufficiently large range of frequencies. It is usually
V not possible to estimate the asymptotic limits at large or small

frequencies. Further, in order to use the theoretical results to

obtain values for the frequency-dependent bulk viscosity and

subsequently the compressional relaxation function, independent

information on the frequency-dependent shear viscosity is required.

There are very few cases for which both sets of data have been

obtained......_:



Silicone Oils

Barlow, Harrison and Lamb [361 have presented data on the response

to an oscillatory shear wave for various silicone oils. The

experiments covered an extensive range of frequencies and temperatures,

and both rkk and "(A were reported. An interesting feature of some

of these fluids is that the value of X.. (modified thermoviscous

number, obtained from X, with V4*o ) is small enough so that the

power series expansions in X can be used. For the special case that
So and It= L 

,.~>

(5.28)

Values of X. (100 MHz) were calculated for several silicone oils of

different molecular weights. It was found that the simplified

expression (5.28) is only applicable for a limited range of materials

and temperatures.

Hunter and Derdul [37] have reported sound absorption data for

three of the silicone oils used by Barlow et al. [361 for shear

measurements, i.e., the 100, 350, and 1000 centistokes (cS) materials

for 0 = -10 , 10 and 300C. The absorption data are shown plotted in

Fig. 5.3. The authors report that the absorption data for the 1000 cS

silicone were about 10-15% higher than the 350 cS fluid. The

theoretical predictions for the silicone oils, obtained by using the

shear dato of Barlow et al. [361 and assuming that ALAm)o, are also W.-

graphed in Fig. 5.3. The calculations for the 1000 cS material were

computed by the complete expressions. However, as described earlier,

provided that Xw~ci., then (5.28) is valid. This relation is the same

as that used by Hunter and Derdul [371.

E
U

.01 .1 1 10 102  03

f (MHz)

Figure 5.3: Graph of the absorption coefficient versus frequency
. for 100 cS and 350 cS Silicone Oil (DC 200 Series).

%. 
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The experimental data for the 100 cS and 350 cS fluids are

accurately determined by the theory, assuming that Xw is negligible

small in the range of frequencies examined. Also, the values of the

absorption computed by the exact formulae are somewhat larger (10-15%)

than for the 350cS material which is in agreement with the experimental

measurements.

Hunter and Derdul [371 also reported that the dispersion was
negligible for the range of frequencies investigated (301 5 350MHz)
which is in agreement with the theory.

It is concluded that for silicone oils the bulk viscosity t(Wi is
very small in the range of frequencies examined. Absorption
measurements at lower frequencies would be desirable.

5.4 Application to Solutions of Polymeric Materials

Provided that Xw4Xi, then the power series expansion for the
absorption measure is applicable and reduces to the rather simple form:

•(5.29)

-p ', w h e r e •___ _

The subscript S refers to the solvent, and 1<. and refer to thebulk and shear viscosity of the solution respectively, and-:i: :

::: q, C '/qand Yw'yKe%s$/Ks refer to the specific shear and bulk

viscosities respectively. For very dilute solutions, :

'.'I=L Z, /rl' +~

where [ ] is the intrinsic viscosity rf 0 and is the
concentration (g of polymer/cm of solution).It is also convenient
to define an intrinsic bulk viscosity [K], viz.,

hence the specific bulk viscosity becomes:
- .:.:

Adequate data are not available for this quantity in order to determine
its properties. Also, note that we must require K($*0 for an intrinsic

bulk viscosity to be defined.

For very dilute solutions of polymeric materials, (5.29) may be
written
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The function 4f, may be obtained by experimental methods or by use of

a molecular theory such as that proposed by Zimm [35] or Rouse [34) for

monodisperse polymers. In Fig. 5.4, calculated from Zimm's theory, 4'( ..

has been plotted versus frequency using molecular weight as a

parameter. In the limit of W -) , both Afand k(w) are unity.

Now, define .

(cc) Ls +'C.? + 1 :. O

I.).

',, 
. .. "

1.0

* M.9X10 6

%.6 1,0 X! 
"

7.5i103

A-

Figure 5.4: Graph of *'n (w)
versus w for polymer solutions of
various molecular weights calcu-

0 2 4 6 8 10 lated by the theory of Zimm.

lgW (rad/bec)

Both the theories of Zimm and Rouse predict that 4 = , which -. '.

appears to be an unacceptable result since experimental data indicate

4. otherwise. Theoretical attempts [38] have been made to correct this

deficiency, and also to account for polydispersity of the polymer.

Unfortunately, the theories have been restricted to dilute solutions

where inter-molecular interactions or entanglements are unimportant. "V

Many of the reported data on sound absorption are for concentrated

solutions.
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Now for small enough W , such that X44-L L and

1. , obtain

For a particular polymer-solvent system it is generally possible to

write an expression of the form [391:

t rI A M,.

where A and m are constants for a fixed temperature (O-4 Z).

Further CrIl,)o (typical values are of order unity) which states that

the shear viscosity of the solution is greater than the pure solvent.

At the present time, a discussion of the properties of the

intrinsic bulk viscosity is speculative since there is a complete lack

of theory and experiment on this subject. However, (5.30) does provide

a relation from which IKIcan be determined by experiments.

For large enough CJ, where )4,41 , (5.29) becomes:

_ _ _ .,: .. ,

VL 494;

In summary, (5.29) is the fundamental relation representing the

absorption coefficient as a function of frequency for polymer

solutions. If the solutions are dilute, the data that are needed to

compute the absorption of acoustic waves are: 1) the intrinsic

viscosity, 2) the concentration, 3) the molecular weight, or the

relation between intrinsic viscosity and molecular weight, 4)

experimental data, or a molecular theory, for 5) the value of the

bulk viscosity of the solution, or the intrinsic bulk viscosity and 6) , '

the function , In fact, sound absorption data will provide us

with a knowledge of 5) and 6). For concentrated solutions, there are

no guidelines currently available to estimate the absorption and

dispersion measures.

Equation (5.29) may also be written as:

5 .. .C.-

where % ,

.S. 1L (oY)A LrL.IC-4 5 Su, M.) and

.---- m B )-I , &

In the limit: W-'o, 440) )-): therefore
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Now

and . C.' - 4A

In the limit: W-9 large, but such that X, , obtain

and

,'. 1: 
,.I-.I

Now it is accepted that 0 from experimental observations and
the theoretical work of Peterlin [38], which predicts that

In fact, 4 ,.m' decreases as the molecular weight increases.
For solutions which cannot be considered as dilute:

where the conduction term was neglected. However, if conduction is
non-negligible, then write

Now,

((c(

The data which are available indicates that the sign of Kr can be
positive or negative, and the bulk viscosity of a solvent can be Pr
increased or decreased by the addition of a s6lute.

6. Viscoelastic Fluids with Coupled Reactions
A simple set of first-order acoustic equations for a reacting

system with non-Newtonian viscosity may be written as

'Lai & A4- 1 4- 0

27 II 
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bf ar_ Olt t. d6 M_0
w iv - M..

where damped plane wave solutions have been assumed. Here the

equations are similar to (3.3), (3.4), and (3.7) except for the

viscoelastic response model of Noll [29] now subsuming the Newtonian

viscous term previously used in the linear momentum equation and a

visco-reactive term being introduced. In general, a biquadratic

equation for the complex propagation variable % is found:

o- 6.

where

The visco-reactive contributions are'I.

9.'

I".4

.p.

B A. Er "F I

The characteristic equation for IC may be written in terms of ".%.

dimensionless groups of parameters including a frequency number X ,
thermoviscous number Y, a non-Newtonian viscosity number P, as well as

additional parameters due to the presence of reactions as follows:
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This characteristic equation represents a systematic generalization and

unification of the acoustical classes of materials discussed in

sections 3.0 and 5.0. Both chemical and viscoelastic relaxations are

explicitly accounted for. This proposed constitutive theory, however,

remains to be derived from formal continuum thermodynamics and verified

by experiments.

7. Conclusions

Acoustic wave propagation is directly dependent upon the

properties of the transmitting medium. In particular, measurements of

attenuation and dispersion of ultrasonic waves in liquids and gases

have provided useful estimates of material properties, assuming a set

of constitutive relations for the characteristic responses of the

fluid. We have systematically examined and solved the viscothermal V-

forced plane wave acoustic problem for a variety of acoustical classes

of materials, starting with the linearly viscous and Fourier

heat-conducting fluid case. Theoretical extensions have been presented

for acoustic wave propagation in: 1) a reacting fluid mixture in

equilibrium (without diffusion); 2) a binary diffusive mixture

(without reaction); 3) a general linearized compressible fluid with

memory, as mathematically modelled by Coleman and Noll; and finally 4)

the case of a viscoelastic fluid with simultaneous coupled chemical

reactions. L'or all the cases examined, an exact general solution for ,.

'X (the complex propagation constant) was found. High (or low)

frequency expansions were developed to interpret the contributions of

the various phenomena separately. Calculations of sound absorption and

dispersion were made and comparisons to available experimental data V

were discussed whenever possible.

All in all, the linear acoustic wave problem provides interesting

research results to measure several material properties complementing

other experimental approaches, to test constitutive theories, and to

provide a check on the consistency among quantitative estimates of
physico-chemical parameters which may have been independently measured.
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Moreover, the acoustic wave propagation problem provides a means to

introduce and teach valuable information about balance laws for single

and multicomponent mixtures of fluids and constitutive relations.

8. List of Symbols

Ai Chemical affinity of ith reaction [ML T" ] -

A., Coefficient of change of affinity of Aith reaction
with degree-of-advancement variable [M molL

Activity of ath - component [I]
bs Components of external body-force vector per unit

mass [LTL 1
Frequency-dependent isothermal coefficient of

expansion [1]

Frequency-dependent isobaric coefficient of

expansion (11 ] -

Reference and frequency-dependent speeds of sound

respectively [LTL IcT c Instantaneous and equilibrium heat capacities at

constant pressure [L!T 'el
4L ¢ Tnstantaneous and equilibrium heat capacities at

constant volume [L 2 ,4-1

C Mass fraction of constituent cc. (11
C Frequency-dependent heat capacity [ 11

C Frequency-dependent heat capacity for uth
orthonormal reaction [1)

* C. Chemical constituent [1

( ) Total or material derivative IT' Id

dLi Rate of deformation tensor IT&].

D. )Rate of diffusion tensor [TL ]

DA. Binary diffusion coefficient L'

f Frequency of sound wave [T"

Specific Gibbs free energy [L T-]

G.. Matrix coefficients of kinetics equations [T-1]

h. Heat-flux vector [HL72 T " I

h Heat of oth reaction at constant temperature and

pressure [H-morl

S.j. Heat of oth orthonormal reaction [H mol,.
3., Symmetrized matrix coefficients of kinetics

equations IT " ']
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I Number of constituents [ii

k Wave number [L" ]

K Thermo-diffusion coefficient

K Equilibrium constant of rth reaction (1]

Bulk viscosity [ML" T"L

Forward and reverse reaction rate coefficients

respectively of rth reaction [mol ML T I

Thermal diffusion coefficient

Thermal conductivity of mixture IMLT'O
"  -

Molar density of o th constituent

Imol (ofc() I

% Mean molecular weight [mol M1 -

M Molecular weight of ath component [mol (of a) M-1 1

Molecular weight of equilibrium mixture [mol M]

Thermodynamic, thermostatic and acoustic pressuresV6 t
respectively [MLI7 T-1]a

Partial pressure of a(-component

L Diffusive pressure P- C-6

rL Number of reactions [i-

R Number of independent reactions [11

Universal gas constant [MLa T-2 e" mol] I .-

Visco-reactive coefficient for o'th reaction

* Specific entropy [H M "1 Le I

S; Total stress tensor MI"L T-7
Signed stoichiometric numbers [1] S 5 - S-

* S,.Sum of signed stoichiometric numbers of rth reaction (I]

Extra-stress tensor T.. - , .

tic2 1. x,x-component of linearized extra-stress tensor

± Time variable [T]

_ Relative diffusion velocity L = -

V, V. ,V Total, static and acoustic velocities in x-direction [LT" ]

Specific volume of equilibrium mixture [L3 MaI .

Ve. Volumetric change of V'th reaction at constant
temperature and pressure [L3 mol" ]
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V. Volumetric change of 4th orthonormal mode 
at

constant temperature and pressure [L$ mol-L]

x 6. Position vector and components [L]

X. Mole-fraction of A-constituent

X Frequency number [11

yThermoviscous number [1]

Z Extent-of-reaction of (th orthonormal reaction

Absorption coefficient [I" L ]

Instantaneous and equilibrium isobaric coefficients

of thermal expansion [o " ]

Instantaneous and equilibrium isothermal

coefficients of compressibility [T M L

Volumetric change due to concentration

(component A) .

Activity coefficient of th chemical components (i1

Gw Ratio of instantaneous heat capacities

Kronecker delta symbol (11

Specific internal energy [L T_ ]

5 Degree-of-advancement vector and oth component

[mol M"£ ]-

eia ,Reaction velocity at equilibrium [mol M"1 T" ]

Specific entropy [LLT-2  '] "

V.e Shear viscosity (ML1 T' I
G, G Absolute equilibrium and acoustic temperature

respectively [G]

Wavelength of acoustic wave [L-

A, Volume coefficient of viscosity [MI " T-1 ]

Ar Eigenvalue of ith reaction [T"t]

Chemical potential of Ath component [LT "-mol" ]-

t A# Reduced chemical potential -

Density of equilibrium mixture [ML I

r r Relaxation times of eth reaction at constant

(p,e) and (7,p) respectively [Ti 277(p e n 7 P277 '-<



Z Complex propagation coefficient [L]

Helmholtz free energy [L T" ] 

Angular frequency [T
" 1_

aJ)I u) Molar concentration vector and o(th component [mol M
" ]

C a Total molar concentration of mixture

_tJ . Molar production vector and Kth component

[mol M- T ]

Dimensionless chemical relaxation time of o'th reaction [11

JL Antisymmetric diffusive tensor S4 - . _

'dimensions of '; M = mass (g), L = length (cm),

T = time (sec), G = absolute temperature (*K),

H = heat (cal), mol = g mole
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